
Measurement and Detection of Security Properties of

Client-Side Web Applications

A Thesis Presented

by

Michael Weissbacher

to

The College of Computer and Information Science

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Information Assurance

Northeastern University

Boston, Massachusetts

April 2018

For my parents.

Contents

List of Figures v

List of Tables vii

Acknowledgments viii

Abstract of the Thesis ix

1 Introduction 1
1.1 Structure of the Thesis . 4

2 Background 5
2.1 HTTP Security Headers . 5

2.1.1 Overview of Security Headers . 5
2.1.2 Browser policy frameworks . 6
2.1.3 Content Security Policy . 7
2.1.4 Evasion and Attacks Against CSP 8
2.1.5 Beyond Level 1 of CSP . 8

2.2 Browser Extensions . 8
2.2.1 Extension Security Aspects for Browsers 8
2.2.2 Privacy leaks in Extensions . 11
2.2.3 Privacy leaks in Other Platforms . 11
2.2.4 Extension Ad Injection . 12
2.2.5 Extension Analysis Systems . 12
2.2.6 Tracking: Extensions and the Web 13

2.3 Vulnerabilities in Web Applications . 14
2.3.1 Measuring and Reducing Complexity 14
2.3.2 Single Page Applications . 15
2.3.3 Mash-ups or Widgets . 15
2.3.4 Client-side communication . 16
2.3.5 Popular JavaScript Frameworks . 16
2.3.6 Server-Side Pre-Rendering . 18
2.3.7 Vulnerability Scanners . 19
2.3.8 Analysis of Web Vulnerability Scanners 20

ii

3 Investigating Content Security Policy 22
3.1 Introduction . 22
3.2 Content Security Policy . 24

3.2.1 Usage of HTTP Security Headers . 26
3.3 CSP Violation Reports . 31

3.3.1 Background . 31
3.3.2 Methodology . 32
3.3.3 Results . 34
3.3.4 Conclusions . 38

3.4 Semi-Automated Policy Generation . 39
3.4.1 Methodology . 39
3.4.2 Evaluation . 40
3.4.3 Conclusions . 44

3.5 Discussion . 45
3.5.1 Discussions with Security Engineers 45
3.5.2 Suggested Improvements . 46

3.6 Chapter Summary . 46
3.7 Future Work . 47

4 Identifying History Leaking Browser Extensions 48
4.1 Introduction . 48
4.2 Motivation . 50

4.2.1 HTTP URL Honeypot . 51
4.2.2 Types of Trackers . 52
4.2.3 Threat Model . 52

4.3 Case study of a large history data collector 53
4.3.1 Origins of Data . 53
4.3.2 SimilarWeb Chrome Extension . 54
4.3.3 Finding More Extensions . 54
4.3.4 Network Information . 55
4.3.5 Reported Extensions . 56

4.4 Information Leaks in High-Profile Extensions 56
4.4.1 WOT: Web of Trust, Website Reputation Ratings 57
4.4.2 CouponMate: Coupon Codes & Deals 57

4.5 Detection Approach . 57
4.5.1 Overview . 58
4.5.2 Network Counterfactual Analysis . 60
4.5.3 Extension Triage . 62
4.5.4 History Leakage Detection . 64

4.6 Ex-Ray Implementation . 65
4.6.1 Extension Containers . 65
4.6.2 Browser Instrumentation . 65

4.7 Evaluation . 67
4.7.1 Experimental Setting . 67
4.7.2 Ex-Ray Results . 68

4.8 Discussion . 74
4.8.1 Browser-enabled Tracking . 74
4.8.2 Foundations Towards Solutions . 75
4.8.3 Evasion . 75

4.9 Future Work . 76
4.10 Chapter Summary . 77

5 SPA Rewriting to Enhance Vulnerability Discovery 78
5.1 Introduction . 78
5.2 Motivation . 80

5.2.1 Threat Model . 80
5.3 System Overview . 81

5.3.1 JavaScript Instrumentation . 81
5.3.2 Vulnerability Scanner Capability Test and Log Analysis 82

5.4 SPARE–SPA Rewriting for Exploitability 84
5.4.1 State Management and Manipulation 87
5.4.2 Accessibility of views . 87

5.5 Evaluation . 88
5.5.1 Setup . 89
5.5.2 Evaluation of Existing Black-box Systems 90
5.5.3 Crawling Results . 90
5.5.4 Measuring and Comparing Capabilities 94
5.5.5 Security Effectiveness . 95
5.5.6 SPARE Results . 96

5.6 Discussion . 96
5.7 Future Work . 98
5.8 Chapter Summary . 98

6 Papers 100
6.1 Thesis Publications . 100
6.2 Other Work . 101

7 Conclusion 104
7.1 Future Work . 106

Bibliography 108

List of Figures

1.1 Thesis overview. The areas of work are focusing on three topics of the web
security landscape. Analysis of security HTTP headers for hardening web
applications, detection of privacy leaks in browser extensions, and client-side
web application penetration testing tools. 2

2.1 Contributors to JavaScript frameworks on GitHub [41]. 17
2.2 Ecosystem of frameworks, demonstrating overall momentum and usage [41] . 18

3.1 Popularity of security headers in the Alexa Top 10K. 29
3.2 Fraction of new policy entries discovered over time on site B (measurement

inactive during the dashed intervals). It can take some time until all legitimate
resources have been accessed at least once; in the meantime, many injected
resources are reported. 36

3.3 Frequency of legitimate and invalid violations being reported on site D. Some
injected resources occurred orders of magnitude more often than legitimate
resources. 37

4.1 Extension execution with unique URLs vs. incoming connections to those
URLs from the public Internet. These connections confirm that leaked brows-
ing history is used by the receivers, often immediately upon execution. . . . 51

4.2 Neighboring relationships of IPs between seemingly unrelated domains used
for monitoring. 55

4.3 Graph linking domain names by IP relationships used in 42 extensions to
covertly collect browsing history. 55

4.4 Domains using upalytics.com library reported to a network of domains that
can be linked by IP neighborship. 55

4.5 Ex-Ray architectural overview. A classification system combines unsuper-
vised and supervised methods. After triaging unsupervised results, a vetted
dataset is used to classify extensions based on n-grams of API calls. 58

4.6 Tracking extension. 60
4.7 Benign extensions. 60

v

4.8 Comparison in change of traffic between executions leaking history and benign
extensions. Each bar displays the change of traffic sent relative to executions
with increased history. Sent data projects an ascending slope based on size of
history. Received data did not reflect this trend. 60

4.9 Extensions interact with multiple servers on the Internet, sending and re-
ceiving data. Trackers that receive browsing history behave differently than
other servers. By varying browsing history over repeated executions, patterns
of trackers become apparent. 66

4.10 Ex-Ray extension execution overview. 66

5.1 Function before performing instrumentation. 82
5.2 Function after instrumentation . 82
5.3 Data-collection function which is invoked on each function entry. The call

sends all relevant tracing information to a trace collection server. The exit-
function operates similarly, except that it is invoked with the return value,
which is passed back. 83

5.4 SPAs, consisting of HTML and JavaScript code are transferred to the client.
Users interact with the SPA locally, state changes are not visible to the server.
Except, if data is explicitly sent to the server. 85

5.5 After rewriting a SPA, the DOM state is stored on the server-side, encapsu-
lating client-side features. Users (or penetration testing tools) can interact
with it in the request/response paradigm. The DOM is rendered server-side
and the result returned as a static document. The state becomes visible to
the server. 85

5.6 Overview of data transferred and actions taken with each state change for a
rewritten SPA. 88

5.7 Route and action-specific code injection into JSDOM object. The code is
added to the DOM as a new script element, executed immediately, and
removed from the DOM before being rendered for a response. 88

List of Tables

3.1 The types of directives supported in the current W3C standard CSP 1.0. . . 24
3.2 Number of websites with security-related HTTP response headers, grouped

by intervals of site popularity, for the Alexa Top 1M ranking. 28
3.3 Overview of enforced policies. 30
3.4 Overview of the CSP violation report data sets received from partner websites

in early 2014, after removing inconsistent reports. 33
3.5 Length of policies when whitelisting all violations from the report data set

(a), and with an additional filter for URL schemes of browser extensions
(b). Most of the policy entries correspond to injected resources; only few are
intended to be included. (In brackets, the number of unique policy entries
when disregarding the protocol HTTP(S) or alternative domains, such as the
www subdomain.) . 34

3.6 Most frequent Chrome extensions observed at site D. 35
3.7 Overlap between the sets of policy entries generated by the crawler, through

manual browsing and from user-submitted reports. (In brackets, the num-
ber of common/different policy entries when disregarding alternative domain
names or HTTP(S).) No method was fully reliable. 41

3.8 Additional policy entries discovered in repeated crawls. The high variability
due to advertising on the BBC precludes CSP from being used effectively.
CNN’s way of including advertisement results in a relatively stable (and en-
forceable) policy. 44

4.1 Instrumented files, functions, and collected parameters after running the
LibTooling program on the Chromium source code. 67

4.2 Top five extensions connecting to the honeypot with highest installation num-
bers which are still available in the Chrome Web Store. 69

4.3 n-gram classification results for varying n. 73

5.1 Characteristics of the scanners evaluated . 89
5.2 Pages reached without any modifications to the testing application 91
5.3 Crawling challenges successfully completed 94
5.4 Redundant reports and redundancy rate of Google Cloud Security Scanner . 95

vii

Acknowledgments

This work could not have been realized without my advisors Engin Kirda and William
Robertson who offered me the opportunity to pursue this very thesis. I am thankful for
having been able to interact with lab-colleagues past and present: Collin Mulliner, Patrick
Carter, Matthew Clarke-Lauer, Andrea Mambretti, Tobias Lauinger, Amin Kharraz. They
offered feedback and discussion on my projects as we gradually became friends. Especially
to Collin, who showed me the ropes of doing research - thank you!

Friends and colleagues at Northeastern and elsewhere, who provided different viewpoints
and generally made this time more enjoyable: Arash Molavi, Ancsa Hannak, Konstanti-
nos Athanasiou, Piotr Sapieżyński, Chaima Jemmali, Lucianna Kiffer, Erik-Oliver Blass,
Matthias Neugschwandtner, Georg Merzdovnik, Lydia Zakynthinou, Clemens Kolbitsch, Ger-
ald Wodni, Ammar Ammar, Paul Coote, and Lukas Fischer.

Also, to the co-authors of my papers that were eager to walk the extra mile: William
Blair, Enrico Mariconti, Yan Shoshitaishvili, Gianluca Stringhini, Guillermo Suarez-Tangil,
and Fish Wang. To Christopher Kruegel and Giovanni Vigna for hosting me to work on my
Master’s thesis, the Shellphish hacking collective, and the UCSB SecLab in it’s entirety. I
learned many things I still benefit from. Hack the planet!

None of this would have been possible without my close friends and family who have
been supporting me throughout this pursuit.

viii

Abstract of the Thesis

Measurement and Detection of Security Properties of Client-Side
Web Applications

by
Michael Weissbacher

Doctor of Philosophy in Information Assurance
Northeastern University, April 2018

Dr. Engin Kirda, Advisor

Modern Web applications are increasingly moving program logic to the client-side. With
the growing adoption of HTML5 APIs, vulnerabilities and hidden functionality are becoming
increasingly important to address. However, while detecting and preventing attacks against
Web applications is a well-studied topic on the server, considerably less work has been
performed for the client.

An early example of a client-side exploit was the 2005 MySpace worm, it spread a million
times within 20 hours. While Web applications nowadays are generally more secure than
MySpace at the time, software vulnerabilities are still common. Ideally, software would be
free of vulnerabilities, however, this currently seems an elusive goal. Nowadays, behavior
similar to the MySpace worm would have a more far-reaching impact as client-side Web
applications are omnipresent.

By measuring and building detection tools for vulnerabilities and hidden software, ex-
ploitation can be prevented. For example, Content Security Policy (CSP) is a technology
designed to prevent exploitation of client-side vulnerabilities. However, after measuring and
building detection tools, these defenses are often ineffective.

For my thesis I propose novel research into measurement and detection of client-side
Web applications security properties. In particular I will address three fields of interest,
CSP, history leaks in browser extensions, and black-box Web vulnerability scanners.

In the first part of my thesis, I show that CSP, a promising technology for hardening of
Web applications, is used on a low number of websites and rarely used to it’s full potential.
I perform a long-term measurement, and further determine challenges in deployments that
prevent wide adoption. Next, I outline feasibility of semi-automated policy generation, both

ix

from the perspective of a website operator, or an external third party. Finally, I explore
barriers to suggest improvements that could help ease CSP adoption.

In the second part, I investigate methods of detection for history-leaking browser exten-
sions. I show that established security measures by browsers are insufficient to prevent such
attacks, as extensions can leak history even with modest permissions. I introduce a novel
method of detecting such leaks, with a prototype implementation for Chrome extensions,
Ex-Ray. Using my method for pre-screening of extension before store admission, browsers
can prevent such extensions from being used.

For the third part, I develop methods of assessing black-box Web penetration testing
tools under the aspect of Single Page Applications. Unlike server-side penetration testing
tools, this area has not yet been researched enough. I use shortcomings which were identified
through the assessment to guide enhancements, and present a prototype to overcome some
of them.

Chapter 1

Introduction

Both business and personal software used to be delivered as stand-alone packages. Ap-

plications such as mail clients or spreadsheet processing were separate programs on client

computers. While the early Web was not offering much more than markup for text, the Web

nowadays is capable of largely replacing such single-purpose packages. Modern technologies

such as HTML 5 have transformed the browser into a platform that handles much of the

logic previously performed by stand-alone programs. Online-banking, video conferences, or

text editing are often handled through Web applications. The shift of applications from the

desktop to the Web has made the browser the de-facto operating system. However, this

transfer of program logic also means more software vulnerabilities in Web applications.

While in 1997 only 20% of the top 500 sites used JavaScript, this number increased to 98%

in 2016. Furthermore, these pages had a steadily growing number of JavaScript inclusions,

statements per file, and cyclomatic complexity [89]. Other sources of complexity are the

code base of browsers and how exposed they are to the Web.

The more complex software becomes, the more likely bugs are to riddle it [61, 80]. Data

of value attracts attackers who are eager to exploit vulnerabilities in systems. Unfortunately,

the shift of complexity from the server to the client also means more programming mistakes

are introduced to the client-side. Such mistakes can be exploited by attackers to act on

behalf of users, or steal personal information.

Through a higher level of abstraction, systems also become more homogeneous. As a

result, attacks against client-side applications can impact large numbers of users, reaching

1

CHAPTER 1. INTRODUCTION

Web
Applications

Extensions

CSP

Ex-RaySPARE

Figure 1.1: Thesis overview. The areas of work are focusing on three topics of the web
security landscape. Analysis of security HTTP headers for hardening web applications,
detection of privacy leaks in browser extensions, and client-side web application penetration
testing tools.

beyond boundaries of underlying hardware or operating system.

In this thesis, I seek to address real-world problems with practical systems in the field

of Web security. As software vulnerabilities and hidden functionality in programs are

widespread, my primary interest is developing novel methods to measure and detect such

behavior.

Thesis Statement. Exploitable software vulnerabilities and hidden functionality per-

meate software. Analysis of client-side software in search of vulnerabilities and unintended

behavior becomes increasingly important as the Web program logic shifts from the server

to the client. In this thesis I develop novel methods and automated mechanisms to reduce

the impact of client-side vulnerabilities and hidden privacy invasions. I show that such an

approach is both feasible and effective. I investigate shortcomings and possible avenues for

enhancement of CSP, Web vulnerability scanners, and privacy of browser extensions.

For the purpose of my thesis, I show that it is possible to develop novel methods and auto-

mated mechanisms for improved client-side security. I back the claim through contributions

in the following three areas:

2

CHAPTER 1. INTRODUCTION

Content Security Policy (CSP): CSP is a principled and robust browser security mechanism

against content injection attacks. A policy is delivered to the browser on a secure chan-

nel, and enforced on how the site has to behave. This technique can render exploitation

of vulnerabilities impossible, and make even a buggy program resilient to attacks. For

this thesis I performed a long-term measurement, finding that usage is low. I further

determine challenges in deployments that prevent wide adoption, as it is lagging com-

parable security headers. Further I will outline feasibility of deploying CSP from the

perspective of a website operator, and develop a method of semi-automated policy gen-

eration through crawling. Finally, I will explore barriers and suggest improvements

that could help ease its adoption.

Browser extension privacy leaks: Browser extensions are a useful mechanism for allowing

third-party additions to core browser functionality. However, they pose a security

risk in this regard since they have access to privileged browser APIs that are not

necessarily restricted by SOP or CSP. This level of access is prone to misuse, as even

modest permissions are sufficient to collect and exfiltrate browsing history. Leaking

extensions often hide their behavior from users who are unaware of the privacy leak.

I developed a methodology for detecting privacy leaks in browser extensions. This

approach allows extensions full API access, but can detect history-leaking extensions

before they are used, making the browser resilient to such attacks. I further developed

a prototype called Ex-Ray, which found extensions in the official Chrome Web store

that were immune to previous state-of-the-art privacy-leak systems.

Client-Side Web Penetration Testing Tools: Web Penetration Testing tools for Web services

are widely available. However, they focus mostly on server-side attacks such as SQL

injection or stored XSS. Client-side attacks such as DOM-based XSS or injection to

localStorage are often not in scope, as JavaScript capabilities of these tools are lack-

ing. I first evaluate the state-of-the-art of penetration testing tools on Single Page

Applications (SPA), identifying shortcomings and avenues to address them. Second,

to overcome some of the identified shortcomings, I develop a prototype, SPARE, to

rewrite Angular SPAs to become more accessible to such scanners. Applications are

3

1.1. STRUCTURE OF THE THESIS

rendered in a server-side DOM and potentially inaccessible views are exposed to the

client. The response is a static HTML file.

The proposed research identifies shortcomings in the state of the art in client-side security

and advances it. It furthermore develops new methods of finding misuse of private data. The

results can be applied to further secure the modern client-side of the Web.

1.1 Structure of the Thesis

The remainder of the thesis is structured as follows: First, Chapter 2 provides an overview

on background information and related work relevant to further chapters. Chapter 3 covers

the HTTP security header Content Security Policy, by performing a long-term study, finding

shortcomings and suggesting enhancements. In Chapter 4 I discuss history leaks in browser

extensions, measure their impact and introduce a detection tool. Chapter 5 performs a

measurement of the state of the art of black-box Web vulnerability scanners, identifies short-

comings and addresses some of them. The thesis concludes in Chapter 7, summarizing the

findings, outlining future avenues for research and offering general discussion.

4

Chapter 2

Background

This chapter describes prior work related to the three main areas covered in this thesis,

Content Security Policy in Chapter 3, Browser Extensions in Chapter 4, and vulnerability

testing of Web applications in Chapter 5.

2.1 HTTP Security Headers

2.1.1 Overview of Security Headers

To discuss CSP in context, I provide a brief overview of the other security relevant

HTTP response headers. Details about them can be found at IETF, W3C, or in the browser

specifications. CSP itself will be discussed afterwards in more detail.

Platform for Privacy Preferences (P3P) [2]. Websites can use this header to describe

their privacy policy. However, it is not supported by major browsers and has not been

actively developed for several years. The header is still in use as Internet Explorer blocks

third-party cookies by default if no policy is present. P3P is legally binding and has been

used in litigation in the past.

DNS Prefetch Control [1]. DNS prefetching is a technique for browsers to reduce latency

by resolving referenced hostnames before a user follows a link. This header allows websites

to override the default behavior of the browser.

5

2.1. HTTP SECURITY HEADERS

XSS Protection [3]. This header can be used to enable or disable client-side heuristic

XSS filtering. The reflected-xss directive of CSP 1.1 is functionally equivalent.

Content Type Options [4]. As the Content-Type header is often not set correctly, MIME

type sniffing can be used to detect the actual response content type. The nosniff directive

is the only option available for this header and disables MIME type sniffing, preventing

possible type confusion.

Frame Options [10]. This header allows a website to restrict iframing to prevent UI

redressing attacks. CSP draft 1.1 includes these features under the frame-ancestors directive,

and may replace this header.

HTTP Strict Transport Security (HSTS) [5]. By using HSTS, websites can specify

that in the future, the browser should only connect to them via a secure connection, thereby

preventing SSL stripping.

Cross-Origin Resource Sharing (CORS) [8]. SOP has proven to be an obstacle for

modern Web applications, and has been worked around by various methods such as JSONP.

CORS allows websites to operate outside the limitations of SOP by extending it, while not

completely side-stepping it.

2.1.2 Browser policy frameworks

CSP was the first widely deployed browser policy framework to mitigate content injection

attacks. However, it was not the first one to be suggested. SOMA (Same Origin Mutual

Approval) [67] reduces the impact of XSS and CSRF by controlling information flows. Web-

site operators need to approve content sources in a manifest file, as well as content providers

need to approve websites to include their content. BEEP [48] can prevent XSS attacks with

a whitelist approach for JavaScript and a DOM sandbox for possibly malicious user content.

Script tags are whitelisted by hash, a feature that is also proposed in the 1.1 draft of CSP.

BLUEPRINT [95] enforces restrictions on the document parse tree in the browser. Web

application server components make parsing decisions and transport the DOM structure to

6

2.1. HTTP SECURITY HEADERS

the client. By enforcing a consistent document structure, misuse of browser rendering quirks

is eliminated. CONSCRIPT [62] supports a variety of policies for JavaScript enforcement,

which can be generated automatically. Static policy generation is supported for Script#, a

Microsoft tool that generates JavaScript from C# code, as well as a dynamic training mode

for other platforms. Weinberger et al. [104] performed an evaluation of browser-side policy

enforcement systems. They concluded that security policies for HTML should be a central

mechanism for preventing content injection attacks, but need more research to become ef-

fective. I performed the first study on CSP adoption in the wild, analyzing how usage has

evolved in the past year on the most popular websites. Also, I investigate how report-only

mode can be used to devise policies, and whether those are effective.

Currently, inline scripts are as popular with websites as they are bad for the effective-

ness of CSP to prevent XSS. Bugzilla and HotCRP required substantial changes to support

CSP [104], while addons.mozilla.org required an effort of several hours [87]. Previous work

performed automatic rewriting of .NET applications to better support CSP [32]. Changes

to the CSP draft, such as nonce and hash whitelisting of scripts, represent an approach that

relieves developers of removing inline scripts while allowing for control over code. Trust

relationships in external script sources have been analyzed by Nikiforakis et al. [65]. 88%

of the Alexa Top 10K most visited websites included scripts from remote sources, and the

most popular single library was included from 68% of the sites. An outlook on the possible

future of Web vulnerabilities has been summarized by Zalewski [9]. While CSP addresses a

wide range of vulnerabilities, it cannot prevent out-of-order execution of scripts, code reuse

through JSONP interfaces, and others.

2.1.3 Content Security Policy

CSP was proposed by Stamm et al. [87], who provided the first implementation in the

Firefox browser. Subsequently, CSP became a W3C standard [7] and was adopted by most

major browsers. Other publications have addressed limitations of CSP and suggested exten-

sions or modifications to the standard. For instance, Soel et al. [85] proposed an extension

of CSP to address shortcomings in postMessage origin handling.

7

addons.mozilla.org

2.2. BROWSER EXTENSIONS

2.1.4 Evasion and Attacks Against CSP

Content injection is the main goal of CSP, to prevent third parties from execution of

code or adding other unwanted content. Injection is also supposed to prevent leaks of data,

which could happen via referrer. Van Acker et al. developed attacks against CSP leaking

data bypassing this objective via DNS and resource prefetching [98].

Weichselbaum et al. performed a large scale study on CSP, developing bypasses against

deployed policies. Their results indicate that 94.68% of policies that attempt to block XSS

fail at it, and 99.34% of policies offer no XSS protection [103].

2.1.5 Beyond Level 1 of CSP

CSP has evolved since the beginning of this study. Recursively enforcing CSP on included

documents is supported by embedded enforcement.1 CSP Level 2 has been adopted by all

major browsers and currently Level 3 is an editor’s draft.2

Research interest in CSP has been active in multiple areas. Finding issues with de-

ployments and fixing them [103], further monitoring growth in deployment [23], generating

policies automatically [71], or directly addressing issues with browser extensions [43].

CSP enforces which resources can be included, but dictates no order. However, out

of order execution of scripts can lead to unintended behavior. Zalewski outlined this in

“Postcards from the post-XSS world” [9]. Lekies et al. [51] have shown this to be a practical

attack.

2.2 Browser Extensions

2.2.1 Extension Security Aspects for Browsers

Chrome itself is considered the most secure widely used browser3, the extension archi-

tecture in particular is also stronger than their competitors [42]. Extensions are executed
1https://w3c.github.io/webappsec-csp/embedded/
2https://w3c.github.io/webappsec-csp/
3https://theintercept.com/2016/07/29/a-famed-hacker-is-grading-thousands-of-programs-and-may-

revolutionize-software-in-the-process/

8

https://w3c.github.io/webappsec-csp/embedded/
https://w3c.github.io/webappsec-csp/
https://theintercept.com/2016/07/29/a-famed-hacker-is-grading-thousands-of-programs-and-may-revolutionize-software-in-the-process/
https://theintercept.com/2016/07/29/a-famed-hacker-is-grading-thousands-of-programs-and-may-revolutionize-software-in-the-process/

2.2. BROWSER EXTENSIONS

in isolation from each other and the content of the page, separated in content scripts and

background scripts. They operate on separate JavaScript heaps and can only communicate

by message passing. Some aspects of Chrome Extensions are similar to apps for mobile

phones, and in particular to Android.

Both stores are confronted by two types of programs that can harm users.4 One, ac-

cidentally introduced mistakes in programs which are created with no harm in mind by

the authors. Two, purposefully malicious extensions that harm the user through various

means such as leaking browsing history. Users can be lured to install by offering benign

functionality. These extensions are in scope for this project.

Security mechanisms that work for one do not necessarily work for the other. For example

Content Security Policy (CSP) can prevent bugs in programs from becoming exploitable, but

will not help against intentionally malicious extensions. The discussed security measures are

all technical, with one exception: the Single Purpose rule. In this section I discuss several

mechanisms that secure Chrome extensions.

Permission System Chrome extensions use a permissions system where permissions are

statically declared in a manifest file. Extension developers should follow the principle of least

privilege, permissions are separated into three levels (low, medium, high).5 Users need to

approve permissions before installing, and updates that add permissions require additional

approval. Unfortunately browser extensions have shown to over-specify required permis-

sions [20], and over-reaching permissions are not known to deter users from installation.

Permissions can be used to both protect the author of an extension as the privacy of

a user. A benign-but-buggy extension that is exploited reduces the impact of the attack.

Conversely, extensions that require low permissions can assure the user that less of their

data is accessed.

Content Security Policy for Extensions Chrome extensions leverage Content Security

Policy (CSP) [87] to reduce the impact of Cross-Site-Scripting vulnerabilities (XSS). CSP is
4https://blog.chromium.org/2009/12/security-in-depth-extension-system.html
5https://support.google.com/chrome_webstore/answer/186213?hl=en

9

https://blog.chromium.org/2009/12/security-in-depth-extension-system.html
https://support.google.com/chrome_webstore/answer/186213?hl=en

2.2. BROWSER EXTENSIONS

a recent web standard with the goal to reduce attacks on web applications. Using CSP for

Chrome extensions started as optional feature, and became mandatory in 2012.6

Appstore Review of Extensions Before becoming available for download in the Chrome

extension store, submitted extensions will be processed by an automated review process.

Manual reviews are also possible in some cases.

Automatic Updates Chrome extensions are updated automatically without user inter-

action, except if extensions request additional permissions. Stale software is under threat

by vulnerabilities, and automatic updates can close the window of vulnerability. However,

through auto-update and change of ownership Chrome extensions can change content with-

out a user noticing. Miscreants are buying popular extensions on the Chrome store and

adding unwanted features.7

Visual Indicators Since Chrome version 49, all extensions are represented with an icon

right of the URL bar. Using icons was optional before, making it possible for extensions

to hide from users while still running in the browser. The move to more prominently high-

light possibly forgotten extensions made deinstallation of unwanted extensions easier, a step

towards usable security

Centralized Installation and Removal Installation of Chrome extensions is by default

only possible through the Chrome store. It used to be possible to install them directly

from websites, called sideloading. To prevent accidental installation of malicious extensions,

Google moved to only allow installation from the Chrome store, or when operating in devel-

oper mode.8 As a result, malicious extensions cannot spread as traditional malware.

Furthermore, centralized deletion of extensions can be carried out through Chrome. If

an extension in the store is detected as malicious after users installed it, it can be removed

from clients. Chrome will request updates for the extension, and delete it if necessary.
6https://blog.chromium.org/2012/02/more-secure-extensions-by-default.html
7http://arstechnica.com/security/2014/01/malware-vendors-buy-chrome-extensions-to-send-adware-

filled-updates
8https://chrome.googleblog.com/2014/05/protecting-chrome-users-from-malicious.html

10

https://blog.chromium.org/2012/02/more-secure-extensions-by-default.html
https://chrome.googleblog.com/2014/05/protecting-chrome-users-from-malicious.html

2.2. BROWSER EXTENSIONS

Single Purpose The single purpose rule is designed to discourage extensions from mis-

leading users. An example is offering a service to the user (e.g., change color of Facebook)

only to obfuscate the true purpose of the extension. For example stealing cookies, or re-

placing ads to generate revenue for the extension author. This rule, introduced in 2013, is

part of the Chrome webstore program policies9 and was further discussed in a post on the

Chromium blog.10 As an example, replacing ads is not generally disallowed, however, it has

to be the primary purpose of an extension.

As a result, authors are motivated to fully disclose the intent of their programs and are

disincentivized from hiding potentially unwanted features. This measure is powerful, yet not

technical, which distinguishes it from the other security rules listed here. Technical measures

cannot reason about the intent of a program. The repercussion is that their extensions can

be deleted from the store and will be eradicated through a central deinstallation process.

Authors of extensions invest their time and money, an extension with a large userbase can

be a financial asset. This is used as leverage, the threat of losing their investments discourages

authors from bundling spyware with their programs.

2.2.2 Privacy leaks in Extensions

Previous work on privacy-violating browser extensions has found them to be a preva-

lent problem. It was shown that official extension store quality checks fail to remove such

perpetrators. Blog posts have manually analyzed extensions [28,105] and Starov et al. stud-

ied leaks based on keyword search [88]. Furthermore, Aggarwal et al. created a Recurrent

Neural Network in application to browser API calls to identify privacy leaks in browser ex-

tensions [14]. In contrast, Ex-Ray does not require searching for particular strings and is

oblivious to the protocols used by extensions.

2.2.3 Privacy leaks in Other Platforms

Browsers are not the only platform prone to leaks of private data. In PiOS [33], Egele et

al. statically analyzed applications from iOS app stores. While only a few applications were
9https://developer.chrome.com/webstore/program_policies

10https://blog.chromium.org/2013/12/keeping-chrome-extensions-simple.html

11

https://developer.chrome.com/webstore/program_policies
https://blog.chromium.org/2013/12/keeping-chrome-extensions-simple.html

2.2. BROWSER EXTENSIONS

identified as leaking private user data, more than half leaked unique phone identifiers that

can be used by third parties to profile users. Similarly, AndroidLeaks [38] uses data-flow

analysis to evaluate Android applications for leaks of private information; they verified leaks

in 2,342 applications. Lever et al. show in a longitudinal study of malware [53] that analysis

of network traffic is a key factor to early detection.

In the first step of Ex-Ray, I apply linear regression in order to evaluate causality rela-

tions [54]. Counterfactual analysis is a relatively simple, but powerful model which has been

used in malware traffic analysis before [58]. The authors focused on distinguishing when a

certain kind of malware sample acted differently from usual behavior due to certain user ac-

tivity (triggers). As the work presented noise and some mislabeled conversations, the authors

applied Bayesian Inference to assess causality between specific user actions and malware fam-

ilies. In this case, the absence of false positives among the extensions that were not leaking

avoided the use of statistical methods to determine whether there is a relation of causality

between being a browser extension leaking browser history or not. Linear regression [78] is

widely used, for instance as a preparatory step before applying machine learning [86], or as

an embedded technique as in SVM [82].

2.2.4 Extension Ad Injection

To monetize extensions, maliciously-inclined authors may add or replace ads in the

browser with their own. In 2015, a study found 249 Chrome extensions in the Chrome

Web store injecting unwanted ads [96]. The authors identified two drops in their measure-

ment of ad injection. They correlate to Chrome blocking side loading of extensions, and

introduction of the single purpose rule to the Chrome store.

2.2.5 Extension Analysis Systems

As with any Web application, browser extensions are third-party code. However, these

programs operate with elevated privileges and have access to powerful APIs that can allow

access to all content within the browser. Permission systems allow developers to restrict

their programs, but extensions have been shown to over-request permissions, effectively de-

12

2.2. BROWSER EXTENSIONS

sensitivizing users. Heule et al. [44] showed that 71% of the top 500 Chrome extensions use

permissions that support leaking private information. They proposed an extension design

based on mandatory access control to protect user privacy.

IBEX [42] is a research framework to statically verify access control and data flow policies

of extensions. Developers have to author their extensions in high-level type safe languages;

.NET and a JavaScript subset are supported. Policies are specified in Datalog and allow for

finer-grained control than contemporary permission systems.

Egele et al. [34] used a dynamic taint analysis approach based on the QEMU system

emulator to detect spyware in Internet Explorer Browser Helper Objects (BHO). BHOs are

classified as malicious if they leak sensitive information on the process level.

Hulk [50] is a system that was used for the first large-scale dynamic analysis of Chrome

extensions. The authors introduced the concept of Honeypages. This technique generates

Web content tailored to an extension to trigger malicious behavior driven by expectations of

the extension.

2.2.6 Tracking: Extensions and the Web

Contemporary websites use a plethora of third-party services that enable developers to

quickly add functionality. As a downside, user privacy suffers, since when websites include

content from a remote source the trust a user puts into a website is delegated. Nikiforakis

et al. [65] studied these delegations and highlighted how widespread this behavior is. As an

example, Google Analytics was included in 68% of the top 10,000 websites.

Third-party tracking on websites has been studied extensively. Browsing on seemingly

unrelated sites can be observed by third-party trackers and combined into a comprehen-

sive browsing history. Mayer et al. introduced the FourthParty measurement platform [60],

discussing privacy implications, technology, and policy perspectives of third-party tracking.

Roesner et al. [75] developed client-side defenses to classify and prevent third-party tracking.

Recent work has analyzed the history of Web tracking via the Internet Archive’s Wayback

Machine [52]. The authors found that tracking has steadily increased since 1996. Tracking

on the Web has never been as pervasive as it is now.

13

2.3. VULNERABILITIES IN WEB APPLICATIONS

2.3 Vulnerabilities in Web Applications

2.3.1 Measuring and Reducing Complexity

Software vulnerabilities are often introduced when code becomes too complex to main-

tain [61, 80]. Managing complexity, measuring it, and trying to reduce it when possible is

pertinent to reduction of vulnerabilities. In context of the Web, which started with basic

HTML pages that were processed by simple renderers, as it progressed to what we know

today. Complexity was introduced on several layers, to the pages served, the backend gen-

erating them, and the browsers displaying them.

Stock et al. performed a longitudinal study on how security aspects of the client-side of

Web applications evolved over 20 years (2007-2017) via archive.org. [89]. They confirmed

JavaScript as the main source of growing complexity on the client, other client-side languages

did not pass the test of time. Their study of top 500 archived websites concluded that early

adopters of security features generally fare better in terms of vulnerabilities.

For the browser-side, Snyder et al. measured how popular usage of JavaScript features is

on popular websites [83]. Out of all features offered by FireFox, only 50% were ever used, and

10% are disproportionately used by ads and trackers. In follow-up work the authors built a

prototype reducing the APIs a browser exposes, effectively reducing the attack surface [84].

Browsers often only add APIs and rarely remove or reduce them. Rare examples are

removal of ambient light sensing in FireFox11 after it was identified as a privacy threat12.

Another example is degradation of high resolution timers to prevent the impact of side-

channels. All major browsers took action as result of Spectre/Meltdown131415.
11https://www.bleepingcomputer.com/news/software/firefox-gets-privacy-boost-by-disabling-

proximity-and-ambient-light-sensor-apis/
12https://www.bleepingcomputer.com/news/security/ambient-light-sensors-can-be-used-to-steal-

browser-data/
13https://www.chromium.org/Home/chromium-security/ssca
14https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
15https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-

internet-explorer/

14

https://www.bleepingcomputer.com/news/software/firefox-gets-privacy-boost-by-disabling-proximity-and-ambient-light-sensor-apis/
https://www.bleepingcomputer.com/news/software/firefox-gets-privacy-boost-by-disabling-proximity-and-ambient-light-sensor-apis/
https://www.bleepingcomputer.com/news/security/ambient-light-sensors-can-be-used-to-steal-browser-data/
https://www.bleepingcomputer.com/news/security/ambient-light-sensors-can-be-used-to-steal-browser-data/
https://www.chromium.org/Home/chromium-security/ssca
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/

2.3. VULNERABILITIES IN WEB APPLICATIONS

2.3.2 Single Page Applications

Traditionally Web applications execute program logic on the server based on a client’s

request, sending a response that is rendered in the browser. Each action the client takes

based on that response triggers a new request, resulting in a new response. Continued

interaction with a page results in roundtrips which could be perceived as slow.

Through the advent of Web client-side programming languages pages added features that

allowed for functionality that would otherwise require sending new requests. Breaking with

the request/response paradigm, Single Page Applications (SPAs) are Web applications where

the predominant part of program logic is executed in the browser. The server transfers a

program, often in JavaScript, which a user can interact with without resulting in a new

request/response pair for every action. The browser is not merely rendering a response, it

changes the content that is presented to the user, but can also manipulate internal state

(e.g.: localStorage). While there is no clear cut-off point at which level of interactivity

Web applications are considered as SPAs, several technologies are essential contributors.

Most notably, advances of HTML5, in particular asynchronous requests (XMLHttpRequest)

for background data retrieval, client-side communication channels that enable interaction

between different origins, and worker threads that allow for background processing.

2.3.3 Mash-ups or Widgets

Before Single Page Applications became to be, Mash-ups or Widgets were terms for small

programs that added limited functionality to a website. More generally, mash-ups enable

applications combined of multiple origins.

MashupOS [46] builds on knowledge from Operating Systems proposing a system that

can isolate distrusting principals, while establishing communication between trusted ones.

The work identifies shortcomings at the time, and goals that MashupOS should achieve to

overcome them.

15

2.3. VULNERABILITIES IN WEB APPLICATIONS

2.3.4 Client-side communication

Frames on pages are isolated based on the Same Origin Policy, limiting interaction be-

tween frames. An early workaround for client-side communication between frames was using

fragment identifiers (the part of a URL after the # sign.) While a frame’s content cannot be

accessed from frames of different origin, the URL is readable. Changes to the fragment do

not trigger a request, this allows a frame to update it’s own fragment, while another frame

can read it. As a result, creating a client-side communication channel.

This workaround became obsolete through the introduction of postMessage, a standard

that formalizes communication between frames. Frames can listen to messages sent to them,

and send messages addressing other frames. Messages are asynchronous and offer authenti-

cation based on a sender’s origin.

These communication channels also introduced new vulnerabilities. Barth et. al stud-

ied security properties of both fragment identifiers and postMessage [21]. Furthermore,

postMessage is prone to insecure handling of message content, or not verifying authentic-

ity of message senders [85, 108].

2.3.5 Popular JavaScript Frameworks

As web applications migrate to the client and become more and more complex, one of the

most common architecture patterns used to organize is the Model View Controller (MVC)

architecture [73]. This method encourages separating distinct functions of the application

into smaller, more manageable pieces. A variety of JavaScript MVC frameworks has emerged

and each provides diverse features and functionality that span a wide range of development

needs [59].

2.3.5.1 AngularJS

Angular, which is maintained by Google, is one of the most popular client-side web ap-

plication frameworks. The premise of Angular is that HTML is not robust enough to create

applications, but at the same time full-fledged frameworks tend to take charge and only allow

additional code to fill in the details. Rather than taking one of these approaches, Angular

16

2.3. VULNERABILITIES IN WEB APPLICATIONS

Figure 2.1: Contributors to JavaScript frameworks on GitHub [41].

instead applies markup (HTML) as if it were designed not just for building static pages, but

for building apps [30]. This is accomplished by building upon HTML and expanding its syn-

tax by teaching the browser “directives.” These directives provide functionality such as data

binding, DOM control, form validation, and assigning new behavior to DOM elements [17].

Rather than enforce high-level abstractions, Angular provides primitives useful for building

high-level abstractions tailored to the specific application. As such, Angular is a low-level

“framework” and intended to be more of a toolset for building application frameworks [16].

2.3.5.2 Backbone.js

The goal of Backbone is to create the minimal set of data structures and user interface

elements that are central to building a JavaScript web application. Doing so provides freedom

in designing the application rather than having to conform to a framework or library. These

minimal elements in Backbone are models and collections (data structures) and views and

URLs (user interface) [19]. Backbone’s dependency is Underscore.js for RESTful persistence,

history support via Backbone.Router, DOM manipulation with Backbone.View, and jQuery

is required [36].

17

2.3. VULNERABILITIES IN WEB APPLICATIONS

Figure 2.2: Ecosystem of frameworks, demonstrating overall momentum and usage [41] .

2.3.5.3 Ember.js

The philosophy of Ember is that the framework should incorporate high-level abstractions

and enforce conventions for properly structuring applications. Providing a uniform structure

reduces the amount of trivial design decisions that must be made and prevents the need to

“reinvent the wheel.” In this way Ember values convention over configuration [30]. By

intentionally focusing on abstracting away the low-level implementation details, Ember also

eliminates the need to write a great deal of boilerplate code, thus allowing the developer to

focus on the parts that make the application unique. Ember’s dependencies are Handlebars.js

and jQuery.

2.3.6 Server-Side Pre-Rendering

Similar work in the area of shifting page rendering to the server exists. For example

the Opera browser for mobile offers an option for slow phones to render pages server-side.16

Furthermore, prerender is a system that uses headless Chrome to render pages server-side to

optimize them for SEO or social networks17. The difference between these tools and SPARE

is that these tools need pages to be navigatable via URLs, otherwise they are inaccessible.

Conversely, SPARE exposes all states even when not accessible by URL.
16https://www.opera.com/mobile
17https://github.com/prerender/prerender

18

https://www.opera.com/mobile
https://github.com/prerender/prerender

2.3. VULNERABILITIES IN WEB APPLICATIONS

2.3.7 Vulnerability Scanners

Web application vulnerability scanners can be divided into three main categories. Black-

Box scanners which operate disregarding source-code analysis, white-Box scanners that uti-

lize source-code analysis techniques, and Gray-Box scanners which use a combination of the

two. All scanners considered in this project are considered black-box vulnerability scanners.

Another category vulnerability scanners can be divided into are dynamic and static. Dy-

namic scanners execute a program with concrete input, and observe results. Static scanners

analyze a program without executing it, or executing it with abstract values. Advantages of

dynamic analysis are that results are immediately observable, however, it is challenging to

find input that triggers relevant program areas. Static analyzers use abstract values that can

be refined based on desired results, but this leads to problems such as path explosion that

can make analysis infeasible. Scanners for the Web are typically dynamic, and the remainder

of this section will focus on dynamic analysis black-box vulnerability scanners.

2.3.7.1 Black-Box Vulnerability Scanners

Black-box vulnerability scanners are often promoted as “point-and-click” pentesting tools

that require little or no human interaction in evaluating the security of web applications. Pre-

vious research analyzing the effectiveness of black-box vulnerability scanners in discovering

vulnerabilities in traditional client-server web applications demonstrated that these scan-

ners are full of limitations and fall far short of the “point-and-click” tools that they aim to

be. This research additionally concluded that the ability to crawl a web application is as

important as the actual ability to detect vulnerabilities [31].

Black-box vulnerability scanners consist of three main modules—the crawler, the attacker,

and the analyzer. In this research I focus primarily on the crawler, as it is vital for a scanner

to have a capable crawler in order to perform a thorough analysis. If a black-box vulnerability

scanner cannot reach a part of the web application, then it can never find a vulnerability

there.

The Crawl Module The crawling module is directed to a starting URL, from which it

follows all links on that page, then retrieves those web pages and follows any further links in

19

2.3. VULNERABILITIES IN WEB APPLICATIONS

order to establish a list of all attainable pages in the application. If the crawler successfully

discovers a page in the application, the attacker module has the potential, based on the

effectiveness of its attacking and analyzing modules, to discover any vulnerabilities within

the given page. However, if the crawler does not discover a page in the application, the other

modules have no opportunity to discover any vulnerabilities within that page regardless of

their effectiveness.

The Attack Module Once a scanner completes the crawling process and analyzes each

discovered page for application input, it subsequently carries out an automated audit for

vulnerabilities by emulating an attacker [13]. One common approach that these tools employ

is “fuzzing,” in which they bombard the application’s input parameters with input data in an

attempt to trigger a vulnerability. Fuzzing is a simple technique that offers a high benefit-cost

ratio, especially because it accesses a web application in the same way users do and can be

utilized independent of the technology that powers the web-application [31, 76]. Although

more sophisticated tools use intelligent heuristics to perform their attacks, fuzzing alone

cannot provide a complete picture of the overall security and must be used in conjunction

with other techniques.

The Analyzing Module For every input sent by the attacking module, the analyzing

module inspects the changes triggered in the web application to determine if a vulnerability

was triggered. Once the scanner has completed its work, it typically presents the user with

a list of vulnerabilities and the pages of the application that contain them.

2.3.8 Analysis of Web Vulnerability Scanners

Although this work focuses on Web vulnerability scanners in a client-side environment,

there exists ample research evaluating these tools in other fashions. In a study of vulnera-

bility assessment tools, Curphey and Araujo reported lackluster performance of black-box

scanners [27]. Peine surveyed the functionality and interfaces of seven scanners [72]. Kals

et al. designed a new vulnerability assessment tool and evaluated it against approximately

25,000 Web pages [49], but no concrete metrics can be discussed because no definitive statis-

20

2.3. VULNERABILITIES IN WEB APPLICATIONS

tics are obtainable for these sites. Using metrics such as code coverage, Suto tested three

scanners against three applications to ascertain their success [92]. Additionally, Suto tested

seven scanners and used their run time and detection capabilities to compare them [93].

Five unnamed tools were run against a tailored benchmark by Wiegenstein et al., but the

causes for the failures are not explained [109]. AnantaSec assessed three scanners against

a variety of Web applications and JavaScript tests, yet no clarification is provided for the

results [15]. Vieira et al. tested four scanners against 300 Web services and asserted high

false positive and false negative rates [99]. Doupè et al. evaluated eleven black-box tools

against a custom vulnerable Web application and reported that many vulnerabilities are

overlooked by security tools, as well as that these tools lack the ability to thoroughly crawl

applications [31]. Bau et al. conducted an analysis of eight black-box scanners to determine

their relevance and effectiveness upon vulnerabilities in the wild, but did not draw compar-

isons from their results [22]. Chen maintains a website that list a high-level comparison of

black-box vulnerability scanners [24].

Outside of the real of Web applications, a promising approach is presented by LAVA [29].

It is a system that generates synthetic vulnerabilities to evaluate bug finding tools. The

system operates on C source code and was applied to real-world programs. The tools under

evaluation found some of the bugs, but not all, highlighting shortcomings in the state-of-the-

art in bug finding tools.

21

Chapter 3

Investigating Content Security Policy

3.1 Introduction

The Web as a platform for application development and distribution has evolved faster

than it could be secured. Consequently, it has been plagued by numerous classes of security

issues, but perhaps none are as serious as content injection attacks. Content injection, of

which cross-site scripting (XSS) is the most well-known form, allows attackers to execute

malicious code that appears to belong to trusted origins, to subvert the intended structure

of documents, to exfiltrate sensitive user information, and to perform unauthorized actions on

behalf of victims. In response, many client- and server-side defenses against content injection

have been proposed, ranging from language-based auto-sanitization [77] to sandboxing of

untrusted content [62] to whitelists of trusted content [48].

Content Security Policy (CSP) is an especially promising browser-based security frame-

work for refining the same-origin policy (SOP), the basis of traditional Web security. CSP

allows developers or administrators to explicitly define, using a declarative policy language,

the origins from which different classes of content can be included into a document. Policies

are sent by the server in a special security header, and a browser supporting the standard

is then responsible for enforcing the policy on the client. CSP provides a principled and

robust mechanism for preventing the inclusion of malicious content in security-sensitive Web

applications. However, despite its promise and implementation in almost all major browsers,

CSP is not widely used in practice—in fact, according to my measurements, it is deployed

22

3.1. INTRODUCTION

in enforcement mode by only 1% of the Alexa Top 100.

In this part of my dissertation, I present the results of a long-term study to determine

why this is the case. In particular, I repeatedly crawled the Alexa Top 1M to measure

adoption of Web security headers, and find that CSP significantly lags behind other, more

narrowly-focused headers in adoption. I also find that for the small fraction of sites that

have adopted CSP, it is often deployed in a manner that does not leverage the full defensive

power of CSP.

In addition to this Internet-scale study, I also quantify the feasibility of incrementally

deploying CSP from the perspective of a security-conscious administrator using its report-

only mode at four websites. Although this is an oft-recommended practice, I find significant

barriers to this approach in practice due to interactions with browser extensions and the

evolution of Web application structure over time.

Finally, I evaluate the feasibility of automatically generating CSP rules for Web appli-

cations, again from the perspective of an administrator. I find that for websites that are

well-structured and do not change significantly over time, rules can indeed by generated in

a black-box fashion. However, for more complex sites such as those that make use of third-

party advertising libraries in their proper site context, policy generation is significantly more

difficult.

To summarize, the contributions of this study are the following:

• I perform the first long-term analysis of CSP adoption in the wild, performing repeated

crawls of the Alexa Top 1M over a 16 month period.

• I investigate challenges in adopting CSP, and why it is not deployed to its full extent

even when it has been adopted.

• I evaluate the feasibility of both report-only incremental deployment and crawler-based

rule generation, and show that each approach has fundamental problems.

• I suggest several avenues for enhancing CSP to ease its adoption.

23

3.2. CONTENT SECURITY POLICY

Table 3.1: The types of directives supported in the current W3C standard CSP 1.0.
Directive Content Sources

default-src All types, if not otherwise explicitly specified
script-src JavaScript, XSLT
object-src Plugins, such as Flash players
style-src Styles, such as CSS
img-src Images
media-src Video and audio (HTML5)
frame-src Pages displayed inside frames
font-src Font files
connect-src Targets of XMLHttpRequest, WebSockets

3.2 Content Security Policy

The goal of CSP is to mitigate content injection attacks against Web applications directly

within the browser [7, 87]. In the following, I describe CSP as it is currently implemented,

and briefly discuss both future extensions and the classes of attacks it is intended to prevent.

3.2.0.1 Overview of CSP

Content Security Policy is fundamentally a specification for defining policies to con-

trol where content can be loaded from, granting significant power to developers to re-

fine the default SOP. Developers or administrators can configure Web servers to include

Content-Security-Policy headers as part of the HTTP responses issued to browsers. CSP-

enabled browsers are then responsible for enforcing the policies associated with each resource.

A content security policy consists of a set of directives. Each directive corresponds to a

specific type of resource, and specifies the set of origins from which resources of that type may

be loaded. Table 3.1 explains the directive types supported in the current W3C standard

CSP 1.0.1 The scheme and port in source expressions are optional.

CSP also supports wildcards (*) for subdomains and the port, and has additional spe-

cial keywords: ‘self’ represents the origin of the resource, while ‘none’ represents an

empty resource list and prevents any resource of the respective type from being loaded.

The script-src and style-src directives additionally support the ‘unsafe-inline’ keyword,
1The directive script-src http://seclab.nu:80, for instance, allows a protected website to load scripts

from the host seclab.nu via HTTP on port 80, but blocks all scripts from other sources.

24

3.2. CONTENT SECURITY POLICY

which allows inline script or CSS to be included in the HTML document rather than being

loaded from an external resource. Finally, ‘unsafe-eval’ allows JavaScript to use string

evaluation methods such as eval() and setTimeout(). If not explicitly whitelisted, CSP

disables these special source types because their use is considered to be particularly unsafe.

However, changing websites to remove all inline scripts can be a burden on developers, and

increase page load latency by introducing additional external resources.

CSP can operate in one of two modes: enforcement or report-only. In enforcement mode,

compatible browsers block resources that violate a policy. In report-only mode, however,

browsers do not enforce policies, but rather report violations that would be blocked on

the developer console. Additionally, a special CSP directive (report-uri) can be used to

instruct browsers to send violation reports to the given URI. This feature can be used to

learn policies before enabling enforcement, or to monitor for unforeseen changes or attacks

against a website. In this project, I make extensive use of the report-only mode and violation

reports to explore various ways to (semi-)automatically generate policies for websites.

CSP has been widely adopted by the browser manufacturers. It is supported by the

current versions of almost all major browsers, including some mobile browsers. It is, however,

only partially supported by Internet Explorer.

3.2.0.2 Deploying CSP

To prevent XSS attacks, disallowing inline scripts and eval is the core requirement to

benefit from CSP. Inline scripts should be disabled to prevent the browser from inadvertently

executing scripts that have been injected into the site. Eval-constructs, often abused to parse

JSON strings, can be used directly by an attacker to execute arbitrary code if she controls

the data source. While the unsafe-inline and unsafe-eval options allow this behavior to

be enabled, their presence marginalizes the benefit of CSP.

Therefore, for version 1.0 of CSP, inline scripts should be moved to files and eval replaced

with a safe equivalent for the corresponding task, such as JSON.parse() to parse JSON.

Furthermore, JavaScript should be hosted on a domain that only serves static files instead of

user content. This separation makes it harder for attackers to execute code in the browser.

Also, external scripts should be moved to a server controlled by the website owner, reducing

25

3.2. CONTENT SECURITY POLICY

trust in third-party servers. The number of whitelisted sources should be kept to a minimum

to increase the difficulty of data exfiltration for attackers.

In the current draft version 1.1, additional features have been introduced to safely support

inline scripts as well as functionally replace the X-Frame-Options header. As these features

are subject to change, I do not address them in this work.

3.2.0.3 Attacks Outside the Scope of CSP

CSP can prevent general content injection attacks, and in draft version 1.1 subsumes

previous mechanisms such as the X-XSS-Protection header, which serves the narrow purpose

of enabling browser XSS filters. However, it is not intended to address other Web attacks

such as cross-site request forgery (CSRF). More fundamentally, CSP describes which content

can be loaded by source, but the order of inclusion is out of scope. Hence, even with strict

rules and perfect enforcement, out-of-order inclusion can lead to undesired side effects in

JavaScript applications [9]. JSONP (JSON with padding) is a mechanism to bypass SOP

restrictions by including a script tag from a remote server and specifying a function to be

executed once a result becomes available. Hence, whitelisted JSONP sources can be used for

calls to arbitrary functions—or, if input for the callback function is not filtered, arbitrary

code execution.

3.2.1 Usage of HTTP Security Headers

In this section, I describe the data collection of HTTP response headers. I collected this

data in an effort to understand the landscape of security headers in the wild, particularly in

regards to CSP. The headers are described in detail in Section 2.1.

3.2.1.1 Methodology

To acquire a long-term overview of CSP adoption, I performed weekly crawls of the

Web starting in December 2012. I crawled the front page of each site in the Alexa Top

1M most frequently visited websites. For every site x, I connected to http://x, https://x,

http://www.x, and https://www.x. I counted a site as using a particular header if any of the

26

http://x
https://x
http://www.x
https://www.x

3.2. CONTENT SECURITY POLICY

four responses served that header. However, the crawler only visited the front page of each

Alexa entry. Therefore, sites that employ CSP only on subdomains or areas other than the

front page were not detected in the crawl.2 Furthermore, if the CSP rules are generated

based on user agent discrimination, the collected data does not hold for all types of browsers

visiting the site. I used a Firefox user agent string, updating version information over time.

3.2.1.2 Adoption of HTTP Security Headers

To measure the popularity of CSP in contrast to other security headers, I looked at the

HTTP response headers in the weekly crawls, as well as a static snapshot from the end

of March 2014. For the static snapshot, I used the entire Alexa Top 1M, breaking down

websites by popularity. I used a snapshot of the Top 10K to track the evolution of response

headers back to December 2012.

To compare the adoption of security-related headers between different levels of site pop-

ularity, I split Table 3.2 into brackets. From the data, it is apparent that websites that are

less popular use CSP less frequently. For instance, among the 100 most popular sites, only

two used CSP (2%), while CSP was enabled for only 775 among the 900,000 least popular

sites (0.00086%).

Hence, websites that are less popular use CSP less frequently. In contrast, for CORS,

header usage was more evenly spread out, with all brackets between 0.7% and 2.6%.

During the crawls, I noticed that Google enabled CSP headers only occasionally. I

performed an additional test of google.com with 1,000 requests, finding that 0.8% of the

responses included CSP headers. While Google had 18 sites in the top 100, none of them

issued CSP headers in the crawl of Table 3.2.

In Figure 3.1, I track the evolution of security-related headers of the Alexa Top 10K from

March 2014 backwards in time to December 2012. P3P was particularly popular; however,

the P3P policies served were often invalid, providing only an explanation for why the website

did not support it. I observe that CSP is only slowly gaining traction over time. The main

contributing factor for the fluctuation of CSP headers in the data is due to Google.
2One example is Twitter, which uses CSP for parts of their site, but not the front page.

27

google.com

3.2. CONTENT SECURITY POLICY

Table 3.2: Number of websites with security-related HTTP response headers, grouped by
intervals of site popularity, for the Alexa Top 1M ranking.

Header / Alexa Rank [1− 102] (102 − 103] (103 − 104] (104 − 105] (105 − 106]

P3P 47 176 849 6,315 79,600
DNS Prefetch Control 1 0 3 40 461
XSS Protection 26 77 269 2,336 43,045
Content Type Options 10 27 172 1,995 42,150
Frame Options 43 165 581 2,747 21,746
HSTS 5 16 83 476 2,475
CORS 1 26 217 1,228 7,149
CSP 2 2 15 57 775

Any security header 66 304 1,623 11,491 132,347

For the hosts in the Top 10K of this crawl, I identified all servers that had sent CSP rules

at any point in time during this study. I found 140 sites that did so; 110 of those belonged

to Google (79%).

3.2.1.3 Detailed Analysis of CSP Headers

In this part, I describe in detail how websites use CSP, whether they use CSP’s reporting

feature to learn policies, whether they actively enforce policies, and how effective those

policies are in mitigating attacks.

Enforcement vs. Report-Only. During this crawl at the end of March, I found 815 sites

in enforcement mode, 35 sites in report-only mode, and no sites that sent both types of

headers. Out of the websites in enforcement mode, only 23 collected violation reports.

In the Top 10K, I observed only one site in report-only mode that later switched to

enforcement. The Norwegian financial services site dnb.no started collecting reports in

June 2013, and enabled enforcement in February 2014. Their enforced default-src di-

rective consists of 74 sources, including the schemes chrome-extension, chromeinvoke, and

chromeinvokeimmediate. Furthermore, unsafe-inline and unsafe-eval are both enabled.

Therefore, this policy appears to provide little benefit over not using CSP at all.

I noticed that several websites use CSP to test for mixed content. Mixed content is the

inclusion of unencrypted content into HTTPS sessions, which reduces the benefit of encryp-

tion. Google’s sampling uses the following report-only policy: default-src https: data:;

28

dnb.no

3.2. CONTENT SECURITY POLICY

Jan 2013

Mar 2013

May 2013
Jul 2013

Sep 2013

Nov 2013
Jan 2014

Mar 2014

date

100

101

102

103

104

#
 o

f d
om

ai
ns

 in
 to

p
10

,0
00

P3P
XSS Protection
Content Type Options
Frame Options
HSTS
CORS
CSP

Figure 3.1: Popularity of security headers in the Alexa Top 10K.

options eval-script inline-script; report-uri /gen_204?atyp=csp. Etsy also samples

for mixed content; I found CSP headers in nine out of 2,000 (0.45%) responses. Similarly,

hootsuite.com tested for mixed content from April 2013 to March 2014 for all responses, but

I observed no CSP headers after that.

Types of Sites Using CSP. To further understand the types of websites that use CSP,

I looked for similarities in website titles. The largest portion of sites supporting CSP, 417,

is due to phpMyAdmin, a PHP-based Web application used to manage MySQL databases.

phpMyAdmin ships with CSP enabled by default, which allows inline scripts, eval, and

restricts sources to ‘self’. While this policy does not prevent XSS, data exfiltration is

more difficult. These rules can be deployed as the software is fairly static. However, when

conducting a search for phpMyAdmin and CSP, I found users having trouble including images

when modifying their installations. The general solution offered was to disable CSP in the

configuration rather than updating the default policy.

Ironically, on the vendors’ demo site http://demo.phpmyadmin.net/master/, the operators

tried to include Google analytics. While the Google analytics domain is whitelisted using

default-src, it is not in the script-src source list. As specific directives override the

29

hootsuite.com
http://demo.phpmyadmin.net/master/

3.2. CONTENT SECURITY POLICY

Table 3.3: Overview of enforced policies.
Feature / Alexa Rank [1− 104] (104 − 106]

unsafe-eval 8 700
unsafe-inline 11 728
script-src ‘self’ 12 789
no report-uri 10 782
#script-src > 10 2 33
* as source 6 230
Median #directives 6 4
Median #script sources 4 1
CSP Policies 13 802

default-src directive, the script is unintentionally blocked.

I also found 170 OwnCloud instances, which uses CSP by default from version 5.

Prevalence of Unsafe Policies. I identified several patterns in CSP policies that violate

deployment best practices as described in Section 3.2.0.2. In Table 3.3, I summarize the

observed rules in enforcement over the Alexa Top 1M from March 24th. I split at the 10K

rank to discriminate between more popular websites and lower ranking ones. ‘*’ represents

either the literal asterisk, or the entire HTTP(S) scheme is whitelisted in one or more of the

source lists.

On the majority of sites, eval and inline is enabled: eight out of 13 and 11 out of 13 in

the Top 10K bracket, 700 out of 802 and 728 out of 802 in the remaining 990,000 sites. This

configuration strongly reduces the benefits of CSP for XSS mitigation. Configuring asterisk

or a whole scheme as a source in a directive enables data leakage to any host. Six out of 13

and 230 out of 802 websites respectively served such directives. 10 out of 13 sites in the Top

10K bracket had no report-uri to collect violation reports. This is surprising as CSP could

be used as a warning system.

While CSP in theory can effectively mitigate XSS and data exfiltration, in practice CSP

is not deployed in a way that provides these benefits.

30

3.3. CSP VIOLATION REPORTS

3.2.1.4 Conclusions

While some sites use CSP as an additional layer of protection against content injection,

CSP is not yet widely adopted. Furthermore, the rules observed in the wild do not lever-

age the full benefits of CSP. The majority of CSP-enabled websites were installations of

phpMyAdmin, which ships with a weak default policy. Other recent security headers have

gained far more traction than CSP, presumably due to their relative ease of deployment.

That only one site in the Alexa Top 10K switched from report-only mode to enforcement

during the measurement suggests that CSP rules cannot be easily derived from collected

reports. It could potentially help adoption if policies could be generated in an automated,

or semi-automated, fashion.

3.3 CSP Violation Reports

Web browsers compatible with CSP can be configured to report back to the website

whenever an activity, whether carried out or blocked, violates the site’s policy. This is meant

as a debugging mechanism for Web operators, both to develop policies from scratch, and to

be informed when an existing policy needs to be updated. Starting with a “deny all” policy

in report-only mode, operators can collect information about all resources that need to be

whitelisted in order for the site to function, compile a corresponding policy, and eventually

switch to enforcement mode. I applied this approach to four websites and analyzed the

reports that I received, gaining unexpected insights into the Web ecosystem.

3.3.1 Background

CSP includes an optional report-uri directive that allows website operators to specify a

sink for violation reports. It is supported in both report-only and enforcement mode of CSP.

As an illustration, consider the following policy: img-src ‘none’; report-uri /sink.cgi.

When a user visits the URL http://seclab.nu/test.html and that page includes the image

resource http://seclab.nu/pic.gif, the browser would send a report similar to the following

one: {”blocked-uri”: ”http://seclab.nu/pic.gif”, ”violated-directive”:

31

http://seclab.nu/test.html
http://seclab.nu/pic.gif
http://seclab.nu/pic.gif

3.3. CSP VIOLATION REPORTS

”img-src ‘none’”, ”document-uri”: ”http://seclab.nu/test.html”, …}. From this report,

the developer can infer that the policy entry img-src http://seclab.nu should be added to

the policy.

3.3.2 Methodology

I deployed CSP on four websites I had access to: two personal pages, an institutional

page, and a popular analysis service. The policies I used specified empty resource lists for

all supported directive types—that is, any browser activity covered by CSP was explicitly

forbidden and should generate a report. I deployed the policies in report-only mode to not

interfere with the normal operation of the site. Besides the additional CSP headers, the sites

were not modified in any way.

During this analysis, I observed that the formats of reports sent by different browser

versions varied slightly. Older Firefox versions, for instance, explicitly stated when a violation

was due to the special cases ‘unsafe-inline’ or ‘unsafe-eval’ for script and style directives,

as opposed to violations based on a resource URI. All recent versions of browsers, however,

reported only an empty blocked-uri instead. Unfortunately, this format did not allow us to

distinguish between ‘unsafe-inline’ and ‘unsafe-eval’ script violations.

In order to work around this issue, I leveraged the fact that recent browser versions sup-

ported multiple CSP headers in parallel. That is, in addition to the regular policy discussed

above that captured any CSP event, I added two more policies that caused reports only for

eval and inline violations, respectively:

default-src *; script-src * ’unsafe-inline’;

style-src * ’unsafe-inline’; report-uri /sink.cgi?type=eval

default-src *; script-src * ’unsafe-eval’;

style-src *; report-uri /sink.cgi?type=inline

I deployed all three policies and distinguished the reports I received using the type pa-

rameter in the report URI. I removed duplicate eval and inline violations that were reported

for the regular policy (30% on site D). Furthermore I removed some violations reported

for the eval and inline policies that were in fact no eval or inline violations (1.8% on site

D). Those were triggered by a bug in older Firefox versions that did not properly execute

32

http://seclab.nu/test.html
http://seclab.nu

3.3. CSP VIOLATION REPORTS

Table 3.4: Overview of the CSP violation report data sets received from partner websites in
early 2014, after removing inconsistent reports.

Site A B C D

Type personal personal institutional service

Reports 1.1 K 21.8 K 48.0 K 7.1 M
Median Reports/Day 9 671 2.1 K 348.5 K

IP Addresses 78 1.6 K 1.2 K 14.4 K
Median Reports/Addr. 7 7 28 85

% Reports/Browser
Chrome (mobile, derivatives) 46.6 (+5.4) 59.3 (+8.3) 54.3 (+3.7) 61.0 (+2.3)
Firefox (mobile, derivatives) 23.8 (+0.5) 22.2 (+0.6) 30.1 (+0.5) 30.3 (+0.2)
Safari (mobile) 5.7 (+2.3) 2.3 (+3.5) 4.1 (+3.7) 1.5 (+0.5)
Opera 0.5 0.3 0.6 1.9
Googlebot 15.1 3.1 2.0 2.1

multiple policies in parallel. Since newer Firefox versions were not affected, the user agent

distributions of the original and the filtered data set were very similar. Table 3.4 shows

the number of reports retained in the filtered data set, which is the basis for the following

discussion.

From each report, I derive a policy entry that whitelists the respective violation. I extract

the type, such as img-src, from the violated-directive. For regular violations, I append

the scheme, host name and port from the blocked-uri, such as http://seclab.nu. For inline

or eval violations, I append ‘unsafe-inline’ or ‘unsafe-eval’. I generate a single policy

per site by combining all entries and set default-src ‘none’ to block everything else.

This approach is to generate one single policy that is general enough to cover the entire

protected site. Such a site-wide policy is easier to generate than individual policies, since any

similarity between pages on the same site reduces the number of violation reports necessary

to generate a policy. Furthermore, site-wide policies are easier to configure; a site-wide

reverse proxy could insert a static policy into HTTP responses without the need to change

application code.

33

http://seclab.nu

3.3. CSP VIOLATION REPORTS

Table 3.5: Length of policies when whitelisting all violations from the report data set (a),
and with an additional filter for URL schemes of browser extensions (b). Most of the policy
entries correspond to injected resources; only few are intended to be included. (In brackets,
the number of unique policy entries when disregarding the protocol HTTP(S) or alternative
domains, such as the www subdomain.)

Site A B C D

Entries (a) 14 221 226 1,113
Entries, extension filter (b) 14 212 215 1,090
Correct Subset 3 (3) 14 (9) 38 (13) 22 (9)

3.3.3 Results

Table 3.5 summarizes the policies I generated for each of these sites. I verified manually

each entry in the policies and found that many of the whitelisted resources were not actually

intended to be included in the websites. The policy generated for site A, for instance, is

default-src ‘none’; frame-src https://sr

v.mzcdn.com; img-src ‘self’ data: http://1.2.3.11; object-src http

://www.ajaxcdn.org; script-src ‘unsafe-eval’ ‘unsafe-inline’ http:

//ajax.googleapis.com http://f.ssfiles.com http://i.bestoffersjs.i

nfo http://srv.mzcdn.com http://www.superfish.com https://www.super

fish.com; style-src ‘unsafe-inline’. Yet, site A was entirely static and did not contain

any script at all. The correct policy for site A would have been default-src ‘none’; img-src

‘self’ data:; style-src ‘unsafe-inline’. In other words, only 21% of the policy entries

generated from the received reports were legitimate.

On site D, only 2% of the policy entries were legitimate. Furthermore, many of the

legitimate entries simply enumerated all the alternative domain names of the same site (e.g.,

with or without the www subdomain), or they were due to the same resource being loaded

over HTTP or HTTPS. When disregarding these details to allow for a fairer comparison, as

noted in brackets in the table, the percentage of legitimate policy entries drops to only 0.8%

on site D.

34

3.3. CSP VIOLATION REPORTS

Table 3.6: Most frequent Chrome extensions observed at site D.
Name # Reports

AdBlock 38 K
AdBlock Plus 29 K
Grooveshark Downloader 9.5 K
ScriptSafe 8.8 K
DoNotTrackMe 8.2 K

3.3.3.1 Reasons for invalid policy entries

I identified a number of reasons why Web browsers sent CSP violation reports for re-

sources that did not exist in the original websites. Many of these reports appeared to be

caused by browser extensions that modified the DOM of the page by injecting additional

resources such as scripts or images. I observed extensions for blocking advertisements, exten-

sions injecting advertisements, price comparison toolbars, an anti-virus scanner, a notetaking

plugin, and even a BitTorrent browser extension. I could automatically identify some browser

extensions based on violation reports because they attempted to load resource URIs that

contained the chrome-extension or safari-extension schemes followed by the unique identi-

fier of the extension. AdBlock and AdBlock Plus were the most frequent extensions for the

Chrome browser (Table 3.6), while the most frequent Safari extension was Evernote. Yet,

automatically removing these reports (and a few other unexpected schemes, such as about

and view-source) accounted for fewer than 5% of all incorrect policy entries, as shown in

the second row of Table 3.5. The remaining browser extensions exhibited no such uniquely

distinguishing features, often injecting libraries that are used not only in browser extensions

but also in many websites, such as Ajax tools, Google Analytics, and resources from large

content distribution networks.

When browsers send violation reports for modifications due to browser extensions, the

reverse conclusion is that websites enforcing CSP can cause browser extensions to stop func-

tioning. Some browser extensions thus intercept CSP headers and modify them in order to

whitelist their own resources or disable CSP. I observed reports caused by one such extension,

which were sent because the modification resulted in a semantic error. I cannot quantify how

often such modifications were successful as they are not observable with this methodology.

35

3.3. CSP VIOLATION REPORTS

Feb 16 2014

Feb 23 2014

Mar 0
2 2014

Mar 0
9 2014

Mar 1
6 2014

Mar 2
3 2014

date

0.0

0.2

0.4

0.6

0.8

1.0
fr

a
ct

io
n
 o

f
p
o
lic

y
 e

n
tr

ie
s

re
p
o
rt

e
d

legitimate
invalid

Figure 3.2: Fraction of new policy entries discovered over time on site B (measurement
inactive during the dashed intervals). It can take some time until all legitimate resources
have been accessed at least once; in the meantime, many injected resources are reported.

In addition to browser extensions, “in-flight” modification of pages by ISPs or Web appli-

cations such as anonymity proxies can also cause violation reports. The image loaded from

1.2.3.11 in the example above appeared to be injected by a mobile Internet provider. These

examples illustrate that even when CSP violations due to browser extensions were filtered (or

not reported by the browsers), other non-attack scenarios can still cause websites to receive

spurious reports. Administrators who plan to generate a policy from reports submitted by

their visitors’ Web browsers may need to manually verify a large number of policy entries

in order to avoid accidentally whitelisting resources injected by browser extensions or ISPs

(let alone attackers).

36

3.3. CSP VIOLATION REPORTS

100 101 102 103 104

rank

100

101

102

103

104

105

106

107
fr

e
q
u
e
n
cy

 o
f

p
o
lic

y
 e

n
tr

ie
s

re
p
o
rt

e
d

legitimate
invalid

Figure 3.3: Frequency of legitimate and invalid violations being reported on site D. Some
injected resources occurred orders of magnitude more often than legitimate resources.

3.3.3.2 Time delay until a policy can be generated

On site B, it took around two weeks to receive at least one report for each valid policy

entry. The last resource that was discovered was an embedded YouTube video. Another

resource that was discovered relatively late was an image loaded over HTTPS instead of

HTTP; all other valid policy entries could be generated within the first two days of the

measurement. For the other sites, the durations were similar. In practice I expect these

numbers to vary, thus website operators will need some prior knowledge about the resources

used on their website so that they can decide when it is safe to switch from report-only to

enforcement mode without causing any disruption. Operators could therefore be tempted

to run the observation period for as long as possible in order to minimize the risk of not

37

3.3. CSP VIOLATION REPORTS

receiving reports for legitimate resources. However, as Figure 3.2 shows, the rate of newly

observed, invalid policy entries remained relatively constant over time, suggesting that longer

measurement periods can significantly increase the number of policy entries an operator needs

to verify manually.

3.3.3.3 Report frequency as a (poor) distinguishing feature

Only about 4% of all reports received on site D during this measurement resulted in

an invalid policy entry. Hence, one might attempt to use the frequency of a report as an

indicator for its validity. However, this approach would be problematic for two reasons.

First, an attacker can easily influence the frequency distribution observed by the website by

submitting forged reports. Second, even in the absence of attacks, resources injected into

websites can be so popular that they cause reports more often than some legitimate, but

infrequently accessed, resources.

Figure 3.3 visualizes this phenomenon. The most frequently injected resource (a script

loaded from superfish.com for price comparison) was reported more than 22,000 times. In

contrast, connect-src ‘self’, which is used by a progress meter on the site, was reported

only 9,000 times, and reports corresponding to alternative domain names of site D were

received even less frequently.

3.3.4 Conclusions

Websites small and large observe CSP violation reports for injected resources. Even in the

absence of ostensibly malicious activity, which I did not observe, the high number of injected

resources complicates the process of generating a viable policy from the received reports. At

the moment, this task is mostly a tedious and, from my own experience, error-prone manual

process. As a semi-automated approach to filtering reports, it might be possible to generate

signatures for the most common browser extensions, either manually or by leveraging the

fact that an installed browser extension usually causes several violations to co-occur (based

on time, IP address, and user agent signature). These signatures could be shared with the

community and could be used to reduce the number of reports that need to be verified

38

superfish.com

3.4. SEMI-AUTOMATED POLICY GENERATION

manually.

3.4 Semi-Automated Policy Generation

An alternative approach to generating a policy from appropriately filtered and verified

reports submitted by visitors is to make use of trustworthy reports only. In order to explore

this approach further, I developed a proof-of-concept Web crawler that generates violation

reports in a controlled environment.

3.4.1 Methodology

The crawler is implemented as an extension for the Chromium browser based on Site

Spider, Mark II. The crawler follows at most 500 internal links on the main domain of the

crawled site in a non-randomized breadth-first search. After navigating to a page, the crawler

pauses for 2.5 s to load all resources of a document such as images, scripts, and external pages

displayed in frames. The browser accesses the Web through an instance of the Squid Web

proxy with an ICAP module. The proxy inserts the CSP report-only headers described in

Section 3.3.2 and collects the resulting reports. The proxy also intercepts encrypted SSL

traffic.

After crawling a site, I discarded all reports that did not match the site’s main domain.

These reports referred to external documents loaded in a frame and were not necessary to

generate a policy for the main document. (In CSP, a document’s policy does not transitively

apply to nested documents loaded inside a frame.) From the remaining reports, I generated

a policy as in Section 3.3.2.

The crawler should be considered a proof-of-concept to explore the feasibility of auto-

matically generating policies for websites. By following only hypertext links, the crawler

cannot detect violations that conditionally occur after load-time, such as clicking the “play”

button in a Flash movie, or triggering JavaScript-related events. I leave ways to increase the

crawler’s coverage to future work.

As a potentially more targeted alternative to automated crawling, I also manually browsed

websites in a fresh browser instance and used the proxy to collect reports. This process in-

39

3.4. SEMI-AUTOMATED POLICY GENERATION

cluded no feedback. The goal was to cover all areas of the site and trigger as many different

violations as possible by specifically exercising functionality implemented in JavaScript or

browser plugins.

3.4.2 Evaluation

The question of whether semi-automated policy generation for websites is a suitable

approach—without requiring modifications to the sites—depends on two opposing goals.

First, the generated policy must not break the site. A policy generation mechanism must

discover all resources being included by a site, or a superset thereof. Second, the generated

policy should be as narrow as possible in order to provide the maximum safety gain. Unnec-

essary resources should not be allowed by the policy, and unsafe mechanisms should not be

used. In the first part of this evaluation, I compare methods of collecting reports for policy

generation on sites where I know that a sound policy exists. In the second part, I explore

how well different site architectures work with CSP; that is, whether a sensible policy can

be deployed without changing the sites.

3.4.2.1 Crawling and manual browsing of partner sites

From the reports submitted by visitors’ Web browsers in Section 3.3.3, I know that stable

policies exist for these four sites. Indeed, the sets of policy entries generated by crawling

and manual browsing as shown in the upper part of Table 3.7 overlap, and only a few entries

were found by only one method. Especially when disregarding differences due to alternative

domain names and HTTP(S), both methods performed similarly. However, neither method

was perfect. The crawler discovered resources in a rather hidden portion of site B that

manual browsing did not uncover. On site D, in turn, manual browsing discovered a resource

inclusion that the crawler was not able to find, which was due to exercising JavaScript code

when submitting content to the site. The policy entries generated from valid user-submitted

reports were always a strict superset of those derived from crawling and browsing (as shown

in the lower two-thirds of the table), except for site B where I found that a technical mistake

had prevented CSP headers from being sent to users in a small portion of the site. I conclude

40

3.4. SEMI-AUTOMATED POLICY GENERATION

Table 3.7: Overlap between the sets of policy entries generated by the crawler, through
manual browsing and from user-submitted reports. (In brackets, the number of common/d-
ifferent policy entries when disregarding alternative domain names or HTTP(S).) No method
was fully reliable.

Site A B C D

crawler only 0 (0) 8 (8) 0 (0) 0 (0)
both 3 (3) 12 (9) 12 (10) 8 (7)
manual only 0 (0) 2 (0) 1 (0) 9 (2)

crawler only 0 (0) 9 (9) 0 (0) 0 (0)
both 3 (3) 11 (8) 12 (10) 8 (7)
valid user reports only 0 (0) 3 (1) 26 (3) 14 (2)

manual only 0 (0) 3 (2) 0 (0) 2 (0)
both 3 (3) 11 (7) 13 (10) 15 (9)
valid user reports only 0 (0) 3 (2) 25 (3) 7 (0)

that the crawler and manual browsing techniques need more refinement before they can fully

replace user-submitted reports. Since both techniques are complementary, combining them

could prove useful to increase coverage.

3.4.2.2 Crawling and manual browsing of CSP-enabled sites

In order to compare the crawler-generated policies to real-world policies, I generated

policies for large public websites that deployed CSP in enforcement mode. As a case study,

I provide more detail for Facebook and GitHub.

The crawl included the public portion of Facebook as well as authenticated sessions. The

policy generated by the crawler was a subset of Facebook’s actual policy. It listed the specific

subdomains of Content Distribution Networks (CDNs) observed during the crawl, whereas

Facebook whitelisted all CDN subdomains with a wildcard. Furthermore, while Facebook’s

policy restricted only script-src and connect-src, the crawler also generated entries for

img-src, for instance. Both issues could cause unobserved (but legitimate) behavior to be

blocked and illustrate that automatically generated policies are likely to require fine-tuning

using domain knowledge before they can be deployed.

On GitHub, the crawler discovered all whitelisted resources of the original policy (which

did not use any wildcards, and restricted only script-src, style-src, and object-src). The

crawler generated additional entries that were not part of GitHub’s policy. Upon manual

41

3.4. SEMI-AUTOMATED POLICY GENERATION

verification, I found that some resources included in GitHub’s blog were not loaded due to

missing policy entries. This finding illustrates the importance of monitoring enforced policies

when websites evolve; regular crawls of a website could be a useful tool to help detect such

changes.

3.4.2.3 Influence of design choices on CSP

Architectural features of a site can influence whether it is possible to deploy a meaningful

policy without changing the site. The crawls of Twitter, for instance, found a small, stable

set of policy entries, while additional manual browsing discovered only one additional policy

entry. Most of the resources were internal. Multimedia content included in tweets, for

instance, was loaded from internal subdomains with constant names. Such an architecture

makes it relatively convenient to deploy CSP without major changes. Indeed, Twitter used

CSP in some subdirectories and subdomains.

Other sites such as Amazon, Google, and YouTube dynamically used explicitly named

subdomains of CDNs such as mt{2,3}.google.com, similarly to Facebook. These subdomains

appeared to be used for load balancing and could therefore be considered equivalent from

a security point of view. The crawler was not able to enumerate all these subdomains, but

post-processing of the policy such as using a wildcard *.google.com could address the issue.

A drawback of this approach is that sites such as Amazon that use external CDNs would

also be whitelisting other customers’ subdomains. A cleaner approach would be to use static

domain names at the Web application layer and address load balancing transparently at

lower layers, as appears to be done by Twitter.

In the examples above, it was possible to compensate for some degree of variability in the

sites by broadening the generated policy because the variability was systematic. On certain

types of sites such as blogs where users are allowed to include externally hosted content,

this may not be possible. The policy used by GitHub shows a possible compromise in such

situations: the site allowed images to be loaded from any source and restricted only more

sensitive resource types such as scripts and plugins.

42

3.4. SEMI-AUTOMATED POLICY GENERATION

3.4.2.4 Stability of policies

A requirement to successfully deploy an enforceable policy is to predict at policy genera-

tion time the external resources that will be included when a page is rendered in a browser. A

particularly unpredictable type of external content is advertising. The exact advertisement

shown to a user is typically determined dynamically while the page is loading. Dynamic ad-

vertising can involve techniques such as Real-Time Bidding (RTB), where the opportunity to

display an advertisement to a visitor is auctioned off in real-time, and further dynamic activ-

ity such as cookie matching between the host website and the winner of the auction. There

are routinely tens to hundreds of potential bidders in RTB [68], each of whom represent a

large number of actual advertisers.

In order to better understand how this dynamic activity can be reconciled with the more

static requirements of CSP, I performed repeated crawls of two large websites with dynamic

advertisements and counted how many new policy entries I discovered in each subsequent

crawl (Table 3.8). Twitter, which I crawled as a control data point, remained stable and

resulted in exactly the same policy in all crawls. On the BBC, the crawler discovered between

13 and 61 new policy entries in each of the follow-up crawls; the vast majority of them were

scripts or other content related to advertising. On CNN, the follow-up crawls discovered

only between one and four new policy entries, and only one was unambiguously related to

advertising. Since both sites displayed comparable types and amounts of advertisements, the

differences must be due to the way advertising was implemented. Indeed, the BBC loaded all

advertisement-related resources, including RTB scripts, tracking code, and the final image

being displayed, directly into the body of the main document. It would be very challenging

to deploy CSP in such a scenario because it seems unfeasible to proactively determine any

resource that could potentially be loaded. In contrast, CNN isolated advertisements from

the main document by loading them as a separate document displayed inside an embedded

frame.

This decoupling significantly eases the deployment of CSP because the main document’s

policy does not transitively apply to the document inside the frame. In such a deployment,

it would be possible to enforce a rather strict policy for the main document and a much more

43

3.4. SEMI-AUTOMATED POLICY GENERATION

Table 3.8: Additional policy entries discovered in repeated crawls. The high variability due to
advertising on the BBC precludes CSP from being used effectively. CNN’s way of including
advertisement results in a relatively stable (and enforceable) policy.

Crawl number 1 2 3 4 5

BBC 285 +34 +61 +13 +53
CNN 116 +4 +2 + 1 +1
Twitter 20 +0 +0

permissive policy for the embedded advertisement document (or none at all). The SOP as

well as the HTML5 frame sandboxing mechanism can be used to ensure that untrustworthy

scripts in the frame cannot access or modify the main document.

3.4.2.5 Safety of policies

To assess whether policies generated for a site represent any significant reduction in

exposure to attacks, I checked whether the policies included “unsafe” CSP features—that

is, inline script or style and calls to eval. Among the sites I partnered with that included

JavaScript, only site B did not require eval privileges. Amazon, the BBC, CNN, Facebook,

Google, the Huffington Post, and YouTube required all three privileges; Twitter needed inline

script and style, and GitHub only inline style. These requirements may be due to code on

the sites or in external libraries they include. Even though allowing inline script and eval

reduces the effectiveness of CSP against XSS attacks, by restricting where external resources

may be loaded from, CSP could still make it more difficult for attackers to include custom

content such as images or to exfiltrate stolen data.

3.4.3 Conclusions

Neither naïve crawling nor manual browsing alone are sufficient methods to generate a

content security policy for a website. With this approach, a certain amount of fine-tuning of

generated policies is required for all but the simplest sites. Advanced crawling, or applying

machine learning to the generated policies, could reduce the importance of manual tweaks.

More complex sites may be able to use only a subset of CSP unless they adjust their ar-

chitecture. Once a policy has been deployed, an additional challenge is to ensure that it is

44

3.5. DISCUSSION

always up to date.

3.5 Discussion

I saw that only few websites use CSP, and those that do use it do not leverage its full

benefits. For this section, I reached out to security engineers behind larger CSP deployments

and summarize key points. Furthermore, I suggest several ways in which CSP adoption could

be improved.

3.5.1 Discussions with Security Engineers

To understand implementation decisions behind real-world CSP deployments, I talked

to security engineers responsible for three of the measured websites. Out of these sites, two

were in the Alexa Top 200, and one in the Top 5,000. The websites used CSP in enforcement

mode or report-only for testing. I summarize the key observations in an anonymized fashion.

Websites prefer not to remove inline script. While inline script can be completely

removed from websites, this represents significant effort and can lead to more roundtrips

when loading the page. Engineers hope to address this issue with the nonce and hash

features of CSP draft version 1.1. Hash might be more promising because documents can

be distributed over CDNs more easily, whereas for nonce a new document would need to be

generated for each response.

Risk of breaking functionality. This was manifested by disabling CSP for browser

versions with problematic CSP implementations, including Chrome and Firefox. A website

that is secure but not usable can harm business more than occasional XSS. For the future,

reliable implementations of CSP in browsers are anticipated.

Enforcement over extensions is considered a bug. CSP rule enforcement can

break the functionality of browser extensions. A workaround is to whitelist popular sources.

However, extensions could still be unintentionally restricted. A modification of browser

implementations or the standard to not enforce rules over extensions could solve this.

45

3.6. CHAPTER SUMMARY

3.5.2 Suggested Improvements

I briefly summarize approaches that could help the adoption of CSP and increase its

security benefits when deployed.

Ads should be integrated into iframes instead of the main site. Instead of

whitelisting all possible ad networks or developing a mechanism for recursive policy adoption,

ads should be moved into sandboxed iframes. This allows the main site to be protected with

an effective policy, while the iframe can be more permissive, but isolated. Conflating both

the site proper and ads in the same context is not necessary, since information required by

ads can be passed via postMessage cross-window communication. However, while not widely

available, alternatives such as Security Style Sheets [66] have been proposed that would allow

for such separation without moving content to iframes.

More Web applications and frameworks should adopt CSP. Introducing CSP

to programs that are deployed widely can have a higher impact on the overall security of

the Web as compared to individual websites adopting CSP. As examples, phpMyAdmin and

OwnCloud have adopted CSP, and Django can be configured with CSP. Most desirable would

be the introduction of CSP to Web frameworks, which could drastically improve adoption

of CSP and the safety of the Web.

Browsers should not enforce CSP on extensions. As discussed in Section 3.3,

enforcing policies on browser extensions generates many unexpected reports for websites.

Websites should not be forced to whitelist extensions since the number of extensions and

third-party resources included by those extensions is theoretically unbounded and cannot

be predicted by application developers. Furthermore, CSP in its current form is not an

adequate mechanism for websites to block potentially undesired extensions and should not

be used as such.

3.6 Chapter Summary

In this work, I have presented the results of a long-term study on CSP as it is deployed on

the Web. I have found that CSP adoption significantly lags other Web security mechanisms,

46

3.7. FUTURE WORK

and that even when it has been adopted by a site, it is often deployed in a way that negates

its theoretical benefits for preventing content injection and data exfiltration attacks.

In addition, by enabling CSP at four sites, I observed that it is difficult for third parties

to deploy CSP, either through incremental deployment using report-only mode or through

Web application crawling to semi-automatically generate policies.

CSP clearly holds great promise as a Web security standard, but I can only conclude

that it is difficult for most sites to deploy it to its full potential in its current form. It is my

hope that the improvements I suggest here, as well as upcoming features of the 1.1 draft,

will allow site operators and developers to make effective use of content security policies and

result in a safer Web ecosystem.

3.7 Future Work

This work lines out several avenues for continuing research where the CSP standard

had shortcomings at time of writing. Since the publication of my work, CSP has evolved

and addressed for example dynamically generated scripts with nonce and hash features.

Recursively enforcing CSP on included documents is supported by embedded enforcement.3

CSP Level 2 has been adopted by all major browsers and currently Level 3 is an editor’s

draft.4

However, deploying CSP is still not straight-forward for website developers, and leaves

websites vulnerable to attacks which were not considered in the design of CSP. For example,

even with strict rules and perfect enforcement, out-of-order inclusion can lead to undesired

side effects in JavaScript applications. The idea was outlined in the 2013 essay by Zalewski,

“Postcards from the post-XSS world” [9] and shown to be practical by Lekies et al. [51].

These attacks highlight shortcomings in the state of defensive security of the Web, not just

CSP per se. Future research should explore avenues towards a Web where building secure

websites does not require specialized knowledge, but is an included feature.

3https://w3c.github.io/webappsec-csp/embedded/
4https://w3c.github.io/webappsec-csp/

47

https://w3c.github.io/webappsec-csp/embedded/
https://w3c.github.io/webappsec-csp/

Chapter 4

Identifying History Leaking Browser

Extensions

4.1 Introduction

Browsers offer a software interface to access and modify their content: browser extensions.

The downside of this powerful interface is that malicious actions at the extension level can

lead to problems across all online activities for a user. Extensions can be considered as the

“most dangerous code in the browser” [44]. Previous research found extensions to inject or

replace ads [18,50,111], causing monetary damage to content creators and, in turn, consumers.

To detect privacy-invasive extensions, previous work used dynamic taint analysis to find

spyware in Internet Explorer Browser Helper Objects (BHOs) [34]. With previous research

in mind, browser vendors can work to restrict malicious extensions.

Google Chrome is considered the state of the art in secure browsing. Chrome extensions

can only be installed through a centralized store, and before being admitted they have to pass

a review process. Users are prompted for permissions that an extension requests, and can use

that information to decide whether they want to install the extension or not. Furthermore, if

an extension is considered malicious after admission to the store, it can be remotely removed

from clients. With all these security features in mind, privacy in Chrome extensions is still

an issue.

This work aims to understand to what extent browser extensions violate user privacy

48

4.1. INTRODUCTION

expectations. In preliminary experiments, I found suspicious activity in popular browser

extensions and confirmed that data is not only leaked, but furthermore is processed by third

parties. By presenting unique URLs to multiple extensions, I was able to link incoming

connections on a honeypot to the particular extension responsible for leaking user data.

Inspired by these findings, I introduce Ex-Ray, a system that can automatically detect

history stealing browser extensions without depending on the specific protocol used or leak-

ing methodology. This automated approach is based on analysis of network traffic generated

by dynamically exercising unmodified extensions. Extensions under test are executed within

an instrumented browser test multiple times, and all network traffic generated during execu-

tion is recorded. I decided to focus on the network activity generated by browser extensions

because, while their code and logic can change, they ultimately need to send the acquired

information to their controller, and this will be observable from network traffic. Thus, this

approach builds on a fundamental invariant of tracking and user privacy violation. Fur-

thermore, long term studies of malware have highlighted network activity as a particularly

effective medium for detecting malicious activity [53]. I model features that are intrinsic to

the network traffic generated by trackers to distinguish malicious from benign traffic. I cre-

ate complementary detection systems in unsupervised and supervised fashion, and a triage

system which can classify the likelihood of a leak, easing the burden on security analysts

to identify misbehaving extensions. After identifying a set of extensions that leak private

information by looking at their network traffic, I develop a complementary component that

can infer if an extension is leaking sensitive information by analyzing the API calls that it

makes.

Ex-Ray automatically flagged 212 potential trackers in the top 10,691 extensions with a

false positive rate of 0.27%. My system has found two tracking extensions which were not

detected by previous systems because they were leaking information using a different channel

than was expected by those tools. More precisely, one extension made use of strong encryp-

tion to obfuscate its behavior, and the other used WebSockets to exfiltrate user information

as opposed to HTTP(S).

In summary, the contributions of this work are as follows:

• I developed the first unsupervised system to detect history stealing browser extensions

49

4.2. MOTIVATION

based on network traffic alone that is also robust against obfuscation.

• I quantify the magnitude of user data leakage and introduce a scoring system that is

used to triage extensions. Prioritized extensions are manually vetted and the resulting

labeled dataset is made available to the research community.

• I created a machine learning approach to classify extensions that I use on API call traces

generated by an instrumented browser. This approach reaches 96.43% F-Measure value

and the Recall value is constantly over 99%.

4.2 Motivation

This work focuses on tracking data collected from browsing behavior that is sent to third

parties. As opposed to previous work on history leaking browser extensions [88], I aim for

a system that will detect leaks regardless of how they are transmitted or collected. I target

tracking either through background scripts or modification to pages. The main difference

between these two approaches is that in the Web such trackers are only present on websites

that opt-in to use them. From a user’s perspective, tools that remove these trackers are

available and well understood. Conversely, tracking in extensions can cover all websites a

user visits, and there is no opt-in mechanism. Furthermore, no tools are readily available

that would warn a user of such behavior or block it.

Transferring the current host or URL can be a necessary part of the functionality of an

extension – for example, to check against an online blacklist such as an adult content filter.

However, I found that often extensions also transfer URLs if no such checking is necessary,

or could be expected by the extension’s description, exposing all browsing habits of a user

and creating a breach of privacy. Furthermore, the specification of such functionality is often

buried deep in an extension’s description, if present at all. Web users are concerned about

how their privacy is impacted [25, 56], but are often unaware of what a privacy policy is.1

To provide additional context behind this sort of systemic privacy-violating behavior on

the part of browser extensions, I present a detailed case study on a large actor in the history
1http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-know-what-a-privacy-

policy-is/

50

http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-know-what-a-privacy-policy-is/
http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-know-what-a-privacy-policy-is/

4.2. MOTIVATION

2016-11 2016-12 2017-01 2017-02 2017-03 2017-04 2017-05 2017-06

0

5

10

15

20

25

30

35
Ch

ro
m
e
ex

te
ns
io
ns

Executed
Contacted

Figure 4.1: Extension execution with unique URLs vs. incoming connections to those URLs
from the public Internet. These connections confirm that leaked browsing history is used by
the receivers, often immediately upon execution.

data collection market in Section 4.3. In it, I demonstrate how a single library was tied to

browsing data exfiltration in 42 extensions with over 8 million installations. The extensions

were deleted from the Chrome Web Store within 24 hours of reporting.

4.2.1 HTTP URL Honeypot

To gain insight into the environment in which trackers operate, I configured a honeypot.

To test whether leaked URLs are accessed after being received by trackers, I exercised ex-

tensions with domain names into which I encode their unique extension ID. While executing

in the container, extensions only interact with local Web and DNS servers. However, I op-

erate a web server on the public Internet to monitor client connections for such URLs. As

these domains are used uniquely for these experiments, HTTP connections indicate leaks

linkable to extensions. The connection and execution times are displayed in Figure 4.1, and

discussed in more detail in Section 4.7. The confirmation that trackers are acting on leaked

data motivated further steps in this work. After excluding VPN and proxy extensions, I

received incoming connections from 38 extensions out of all Chrome extensions with more

than 1,000 users.

51

4.2. MOTIVATION

4.2.2 Types of Trackers

Chrome offers a powerful interface to extensions, and while it can be used for useful

tools it can also be misused to violate user privacy. There are multiple ways to collect and

exfiltrate browsing history.

Much like trackers that are added to web pages by their authors, extensions can leak

history by adding trackers to the body of web pages. An example of third-party tracking is

the Facebook “Like” button. These can be blocked by extensions such as Ghostery. A more

robust solution is sending collected history data via requests of extension background scripts.

Such requests are not subject to interception by other extensions, and cannot be blocked as

tracker objects. Compared to tracking via inserting trackers into pages, better coverage can

be achieved.

To acquire browsing data, extensions can intercept requests made by websites via the

chrome.webRequest API, or poll tabs for the URL using chrome.tabs. For past browsing

behavior, the chrome.history API can be used. Diverse options to collect data render

finding a unified way to identify tracking extensions challenging.

4.2.3 Threat Model

Based on the honeypot results, I assume the following attacker model. In this scenario

the attacker is the owner of, or someone who controls the content of, browser extensions.

I assume many users will install these extensions with a cursory reading of the extension’s

description. While permissions can restrict the behavior of browser extensions, capturing and

exfiltrating history can be performed with modest permissions that would not raise suspicion.

For instance, the browsing history permission is categorized as low alert by Google.

The goal of the attacker is to indiscriminately capture URLs of pages visited by the user

while the extension is executed. Furthermore, I assume the adversary collects data with the

purpose of analysis or monetization. As the value of traffic patterns decreases over time,

I assume the attacker to be inclined to leak sooner rather than later, which seems to be

confirmed by the honeypot experiments. A successful attacker would decrease the user’s

privacy as compared to using a browser without the extension in question.

52

4.3. CASE STUDY OF A LARGE HISTORY DATA COLLECTOR

I exclude from the threat model extensions that openly require the sharing of browsing

history as part of their functionality, such as VPNs or online blacklists. Also, I consider

leaks purposeful and supposedly accidental as equal, as I cannot reason well about developer

intent. As detecting and hiding malicious behavior is an arms race, I prefer to be conservative

and assume the attacker could escalate the sophistication of their evasion techniques in the

future.

4.3 Case study of a large history data collector

As case study I look into SimilarWeb, one of the actors in data collection in browser

extensions. I conducted this study before developing Ex-Ray, as the findings turned out to

be symptomatic for a wider range of extensions, the findings motivated this very work [105].

SimilarWeb is a company that offers insights into third-party web analytics. To the

end user the functionality is similar to Google Analytics, except that visitors can see traffic

details of websites neither they or SimilarWeb are affiliated with. This is useful for analysis

of competitors, or to explore new markets for a product.

Using the free version of their service, the presented information includes information on

visitors, search, and advertising. The data is detailed, including number of visitors, average

visit duration, search keywords used, countries of origin, referring sites, destination sites that

the visitors leave through, and others.

4.3.1 Origins of Data

As the company does not have direct access to these data sources, the displayed data

must be extrapolated from data which is accessible to them. This high resolution of data

without direct access motivated further investigations. Their website suggest use of four

types of data sources including A panel of monitored devices, currently the largest in the

industry.

53

4.3. CASE STUDY OF A LARGE HISTORY DATA COLLECTOR

4.3.2 SimilarWeb Chrome Extension

As first step I analyzed the extension offered on their website. The offered main function-

ality consists of suggesting sites similar to the one currently seen. After reviewing their code

and analyzing network behavior, I noticed suspicious behavior. The extension intercepts

requests for all websites and reports any URL or search queries to SimilarWeb in real time,

including metadata such as referrers. I noticed that the JavaScript library used for tracking

was developed by another company, Upalytics 2. The purpose of this library is to track

user behavior in Chrome extensions, other platforms are advertised on their website as well,

including mobile and desktop. Since this was an external library, I suspected it might be

used in other extensions as well for similar purposes.

4.3.3 Finding More Extensions

After crawling the Chrome extension store I found 42 suspicious extensions by searching

for code similarities. To verify malicious behavior I manually analyzed each extension under

the aspect of four questions:

• Does the extension have the capability to exfiltrate private data?

• Does tracking happen “out of the box”, or does the user have to opt-in?

• Is this behavior mentioned in the terms of service?

• If not, is there a link in the terms of service that explains the behavior of the extension?

All suspicious extensions were able to collect history, all but one were tracking out of

the box. The only extension that offered opt-in was SpeakIt!, however, they only switched

to that model after a user complained about the included spyware on an issue tracker 3. Of

these 42 extensions 19 explain their data collection practices in the terms of service, while

23 do not. Furthermore, out of these 23 extensions 12 have no URL where this would be

explained. One URL that is used across 13 extensions to explain the privacy ramifications is
2http://www.upalytics.com
3https://github.com/skechboy/SpeakIt/issues/12

54

http://www.upalytics.com
https://github.com/skechboy/SpeakIt/issues/12

4.3. CASE STUDY OF A LARGE HISTORY DATA COLLECTOR

173.45.127.134

173.45.127.153

173.45.110.172

173.45.127.172

173.45.110.134

173.45.110.153

173.45.127.135

173.45.127.154

173.45.110.173

173.45.127.173

173.45.110.135

173.45.110.154

etc.

lb.crdui.com lb.datarating.com

Figure 4.2: Neighboring relationships of IPs
between seemingly unrelated domains used
for monitoring.

similarsites.com

searchelper.com

6x1

thetrafficstat.net

6x2

webovernet.com

6x3

upalytics.com

6x4

datarating.com

6x4

6x3

6x1

6x2

6x4

6x1

secureweb24.net

3x4

6x3crdui.com

6x1

6x4

connectupdate.com

3x3

Figure 4.3: Graph linking domain names
by IP relationships used in 42 extensions to
covertly collect browsing history.

Figure 4.4: Domains using upalytics.com library reported to a network of domains that can
be linked by IP neighborship.

http://addons-privacy.com. The text is a copy of the upalytics.com privacy policy rendered

into a PNG image. The content explains that personal information including browsing

history and IP data will be collected. Throughout the document instead of specific company

names only general language such as “our product” or “company” is used. It can be used

as a template for any extension using such tracking. While the URL is shared between

extensions, the developers have no obvious connection. Six of the remaining domains point

to the same IP address. Some versions of the privacy policy reference California Civil Code

Section 1798.83 4, which allows for inquiry about usage of personal information for direct

marketing purposes. I sent emails to two of the email addresses, I received responses after

less than a month.

4.3.4 Network Information

The extensions used nine different hardcoded hostnames to receive tracking information,

I found relations linking all 42 extensions. All endpoint domains, addons-privacy.com and

upalytics.com were registered by Domains by Proxy 5, a service used to obfuscate ownership
4https://epic.org/privacy/profiling/sb27.html
5https://www.domainsbyproxy.com

55

http://addons-privacy.com
addons-privacy.com
upalytics.com
https://epic.org/privacy/profiling/sb27.html
https://www.domainsbyproxy.com

4.4. INFORMATION LEAKS IN HIGH-PROFILE EXTENSIONS

of domain names by hiding WHOIS records. All extensions were reporting to subdomains

http://lb.*. Some of the names of the domains appear to be misleading, suggesting updates

or being a searchhelper. Two of the domains (connectupdate.com, secureweb24.net) were

registered 13 seconds apart. Also, the robots.txt file used in all cases is the same.

Furthermore, all these IPs belong to the same hoster, XLHost. Eight out of nine of these

hosts have all addresses in a /18 network, half of the IPs of the upalytics.com endpoint are

in another XLHost network. All IPs in use are unique, however, this involves consecutive IP

addresses and other neighborhood relationships.

All hosts used round robin DNS, using multiple IPs for each domain name. To examine

this closer I compared the distance of IP addresses used by these extensions for tracking. In

Figure 4.3, the nodes are the nine domain names in use, edges are the grade of distance. By

taking into account distances of up to four, I can link together all hostnames used in all 42

extensions. For example: IPs 1.1.1.1 and 1.1.1.3 have a distance of two. As for the labels,

the edge between similarsites.com and thetrafficstat.net reads 6x2. This means that

the domains share six IP addresses with a distance of two. Figure 4.2 visualizes the distance

relationship between lb.crdui.com and lb.datarating.com.

4.3.5 Reported Extensions

After reporting the findings, all extensions were removed from the Chrome store within

24 hours, including the official SimilarWeb and SimilarSites extensions - a partner site. I

hope that loss of installations from the Chrome store will deter developers from bundling

malicious libraries in the future.

4.4 Information Leaks in High-Profile Extensions

In this section I manually analyze extensions which are immune to state of the art privacy

detection in extensions.

56

4.5. DETECTION APPROACH

4.4.1 WOT: Web of Trust, Website Reputation Ratings

Web of Trust (WOT) is a widely used extension with 1.2 M installations. The offered

functionality gives users a ranking of trustworthiness of visited websites. WOT came under

scrutiny in March 2016 by selling browsing data 6. A feature that distinguishes WOT

from other extensions is usage of strong encryption on extension level. It comes with a

cryptographic library (crypto.js) that encrypts tracking payloads with RC4 additionally to

HTTPS transfer, hiding contents from analysis systems such as data leakage prevention. This

extension was automatically flagged by Ex-Ray with a triage score of 61,598 (outstanding,

> 1 is considered suspicious) and is undetectable to currently available systems.

The requested permissions allow to access all sites, modify requests, and access tabs.

This library will track every visited website, including websites on internal networks. POST

data or keystrokes are not monitored.

4.4.2 CouponMate: Coupon Codes & Deals

CouponMate is a shopping application and offers to help searching for applicable coupons.

This extension collects and leaks browsing data via WebSockets, a protocol not analyzed by

prior work, but rising in popularity. In this dataset I found that 103 (0.96%) of extensions

use WebSockets. Ex-Ray is oblivious to protocols and flagged this extension with a triage

score of 20.1, which is a high alert for a human analyst.

4.5 Detection Approach

In this section I describe the design of the approach underlying Ex-Ray. To identify

privacy-violating extensions, I exercise them in multiple stages, varying the amount of private

data supplied to the browser, and in turn to the extension under test. Based on the type of

extension, the traffic usage can change depending on the number of visited sites. However,

the underlying assumption is that benign extension traffic should not be influenced by the

size of the browsing history.
6https://www.heise.de/newsticker/meldung/Abgegriffene-Browserdaten-Mozilla-entfernt-Web-of-

Trust-3455990.html (Link in German)

57

https://www.heise.de/newsticker/meldung/Abgegriffene-Browserdaten-Mozilla-entfernt-Web-of-Trust-3455990.html
https://www.heise.de/newsticker/meldung/Abgegriffene-Browserdaten-Mozilla-entfernt-Web-of-Trust-3455990.html

4.5. DETECTION APPROACH

UNSUPERVISED

SUPERVISED

Vetted
Dataset

CAUSALITY TRIAGE

Unlabeled
Dataset

LEARNINGDETECTION

{leaking,
not-leaking}

Figure 4.5: Ex-Ray architectural overview. A classification system combines unsupervised
and supervised methods. After triaging unsupervised results, a vetted dataset is used to
classify extensions based on n-grams of API calls.

4.5.1 Overview

A top level view of Ex-Ray is shown in Figure 4.5. The three main components of the

system are summarized as follows:

1) Unsupervised learning: I use counterfactual analysis to detect history stealing ex-

tensions based on network traffic. This component is fully unsupervised and, by defi-

nition, prone to misinterpretations.

2) Triage-based analysis: I manually vet the output of my unsupervised system, i.e.,

I verify which extensions are factually leaking and which are not. As the manual

verification is costly, I rely on a scoring system that ranks extensions based on how

likely they are to be leaking information to aid the process.

3) Supervised learning: I systematize the identification of suspicious extensions using

supervised learning over the resulting labeled dataset. This component takes into

account behavior of the extension and builds a model that detects history leaks (i.e.,

it looks at the API calls made by the browser extension when executed).

58

4.5. DETECTION APPROACH

I see different types of tracking used in browser extensions. Some intercept requests and

issue additional requests to trackers. Others transfer aggregate data periodically, while still

others insert trackers into every visited page. An integral part of all trackers is transferring

data to an external server—simply put, this crucial step is what enables trackers to track.

This work focuses on indiscriminate tracking across all pages. To track, a history item

(hi) generated by the browser will be reported either in isolation or in aggregate. In either

case, the size of history items affects network behavior. I argue that network data generated

by an effective tracker, independently of protocol and whether plain, encrypted, or otherwise

obfuscated has to grow as a function of history.

I execute extensions in multiple stages with increasing amounts of private information.

Each hi should contain less information than the following stage, hi < hi+1. I increase the

size of hi in each stage, extending the length of the testing URLs. For example, example.com

/example/index.html in stage 0, and example.com/example/<500characters>/index.html in

stage 10. The expected growth in traffic is h∆. This intuition is confirmed from Figures 4.6

and 4.7 where the boxplots clearly show that trackers usually send more data when there

is more history to leak while the amount of data is constant across the different stages for

benign extensions.

For deterministic tracking, the traffic deltas of adjacent measurements should project

an ascending slope. However, the browser history may be sent compressed in order to

send as few bytes as possible and avoid the leak being visible as plain text in the payload.

This operation would reduce the number of bytes sent while retaining the same amount of

information (entropy). Per information theory, message entropy has an upper bound that

cannot be exceeded. As consequence, the size of compressed messages has a lower bound as

a function of the message entropy. For these experiments, I used compression tools (bzip2,

7zip, xz) to establish a practical lower bound of sent data for each stage as 289 Bytes, 6.9

KB, 14 KB and 30 KB.

Extensions that use trackers establish connections with each execution. Consequently,

any group of hosts that results in less measurements than the number of executions will

not be considered for further analysis. Examples of hosts that extensions only connect to

occasionally are ads.

59

4.5. DETECTION APPROACH

Two Three Four
1

2

3

4

5

6

7
N
o
rm

a
liz
e
d
 s
e
n
t
b
y
te
s

Two Three Four
0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz
e
d
 r
e
ce
iv
e
d
 b
y
te
s

Network flows generated by trackers in extensions

Figure 4.6: Tracking extension.

Two Three Four
0.94

0.96

0.98

1.00

1.02

1.04

1.06

N
o
rm

a
liz
e
d
 s
e
n
t
b
y
te
s

Two Three Four
0.9992

0.9994

0.9996

0.9998

1.0000

1.0002

1.0004

1.0006

1.0008

N
o
rm

a
liz
e
d
 r
e
ce
iv
e
d
 b
y
te
s

Network flows generated by benign extensions

Figure 4.7: Benign extensions.

Figure 4.8: Comparison in change of traffic between executions leaking history and benign
extensions. Each bar displays the change of traffic sent relative to executions with increased
history. Sent data projects an ascending slope based on size of history. Received data did
not reflect this trend.

4.5.2 Network Counterfactual Analysis

The goal of this phase is to model the way in which modifications to the browsing history

influence observed network traffic. Figure 4.8 shows that there is a monotonic increase in

sent traffic between successive stages of privacy-violating extension. Extensions that, on the

contrary, are privacy-respecting show no significant difference. One key finding observed

during the analysis of the traffic behavior is that privacy-violating extensions might exhibit

non-leaking behavior when connecting to certain domains. Thus, it is important to consider

individual flows when building this model. Additionally, I observed that variations exhibited

by privacy-violating extensions are well-fit by linear regression.

Thus, I use linear regression on each set of flows to estimate the optimal set of parameters

that support the identification of history-leaking extensions. I aim to establish a causality

60

4.5. DETECTION APPROACH

relation between two variables: (i) the amount of raw data sent through the network, and

(ii) the amount of history leaked to a given domain. For this, I rely on the counterfactual

analysis model by Lewis [54], where:

The model establishes that, in a fully controlled environment, if we have tests in
which we change only one input variable, and we observe a change in the output,
then the variable and the output are linked by a relation of causality.

In this case, the input variable is the amount of history, the output is the number of

bytes sent in the different flows, and the tests are run with both goodware and malware. My

framework allows to evaluate this relationship by means of different statistical tests, such

as Bayesian inference. This is ideal for situations were there is no deterministic relationship

between the variables, such as in targeted advertisement tracking. Although my framework

is designed to model these scenarios, in practice, I observed that leaking extensions behave

in a deterministic fashion.

In order to systematically identify the conditions under which the causality link is estab-

lished, I run three steps. The first step is performed before applying linear regression, while

the second and third steps are based on the linear regression parameters.

1. Minimum Intercept. While the extension might communicate to a domain in all

given stages, the content transmitted may not contain a privacy leak. This step verifies

whether the amount of data sent exceeds a certain threshold. This threshold is set

based on the size of the history compressed as described in Section 4.5.1.

2. Minimum Slope. In this work I am primarily interested in extensions that actively

track users. This type of extensions is expected to leak as much history data as possible

from the user. This implies that the relationship between stages is expected to be linear

and have a constant variance, modulo any sort of attempt at obfuscation. Based on

this, I set a threshold to the slope in order to exclude all those extensions that do not

fully meet these two criteria.

3. Level of Confidence. Depending on the extension, the fitted regression model might

not always be strictly linear. I can choose to apply certain bounds (lower, upper, or

both) from a fitted model to adjust the precision of the output. Choosing bounds

61

4.5. DETECTION APPROACH

that are very close to the fitted model will give a higher level of confidence in the

decision. On the contrary, a very relaxed model will capture boundary cases at the

cost of introducing false positives.

I define the term flagging policy as the set of parameters used for these checks. A strict

policy is a policy in which parameters select a restricted area and flag less flows than a relaxed

policy which flags many more flows as suspected of leaking browsing history.

The notion of confidence described above and the use of the different policies is precisely

what motivates the triage system described next.

4.5.3 Extension Triage

After determining which extensions could potentially be leaking history in an unsuper-

vised way, I manually vet those results. The goal of this phase is to design a score that

quantifies history leakages and prioritize the manual analysis. For that, I first define a func-

tion L that estimates the number of URLs leaked between two controlled experiments such

that

L(si, sj) =
|sj| − |si|

τ
. (4.1)

Here, |sj| and |si| are the number of bytes sent to a given domain in stages i and j

respectively, while τ is a threshold that estimates the expected growth hδ between i and

j. This threshold is based on the size of the URLs used in the experiment described in

Section 4.5.1. I abuse notation for the sake of simplicity and denote s when I refer to a

transition between two consecutive stages with increasing exercised browsing history.

Given an extension x, I then obtain a score by multiplying the number of URLs leaked

between two consecutive stages s:

score(x) =
∏
s

eL(s). (4.2)

Note that I aim at obtaining a rough understanding of which extensions could be leaking

URLs. Thus, I am mainly interested in high values of L(s). I use an exponential function of

62

4.5. DETECTION APPROACH

L(s) to prioritize extensions that are leaking in all stages but also to find a trade-off between

extensions that only show a leak in some of the stages. Positive and large values will then

output a high score.

Negative values of L(s) mean that the total amount of data sent in the earliest stage is

higher than the amount sent in the latest. Intuitively this means that data sent in each stage

does not depend on the size of URLs in the browser history. The score then treats these cases

as an exponential decay function, giving less weight to those stages and outputting values

closer to score(x) ≃ 0. Likewise, when the amount of data exchanged between stages is

exactly the same (i.e., L(s) ≃ 0), the scoring function will then output score(x) ≃
∏

e0 ≃ 1.

One could obtain a probability of the likelihood of a leak by scaling the score to the interval

[0, 1]. However, as my system currently aims only at prioritizing extensions, giving a rough

notion of risk (without scaling the output) suffices. Thus, I consider the following thresholds

as a general rule of thumb when triaging extensions:

leak(x) =

not-leaking if score(x) ≤ 1

possibly-leaking if 1 < score(x) ≤ 100

likely-leaking otherwise,

(4.3)

where very large values of score(x) show a high confidence that the extension is aggressively

tracking users.

It is important to highlight that the triage stage is optional. An ideal setting with endless

human resources would obviate the need to prioritize extensions and, thus, render the triage

stage merely informative. In practice, extension markets are very large and human workers

tend to be constrained time-wise, which can be a bottleneck for the verification process. In

this case, having a triage system would be valuable. For the purposes of this work, when

labeling the outputs given by the unsupervised module, I have invested human effort in

manually vetting extensions that are primarily ranked as likely-leaking (for positive sam-

ples) and not-leaking (for negative samples). I also look at a fraction of possibly-leaking

extensions in a best-effort fashion.

63

4.5. DETECTION APPROACH

4.5.4 History Leakage Detection

The last component of this system aims at systematizing the identification of unwanted

extensions from a behavioral point of view. For that, I instrument the browser to monitor

dynamically relevant behaviors of the extension during runtime. This component operates

in a fully supervised manner and is composed of the following two phases:

• Learning: The system is trained using the dataset labeled in the previous phase,

building a model of the most discriminatory runtime behaviors.

• Detection: The system is deployed to detect previously unknown privacy-violating

extensions.

Predictions can be then used (i) to obtain a better understanding of how extensions

(mis)use the user’s private information; and, (ii) to discover previously unknown privacy-

violating extensions than can then be analyzed by the triage component. As a result, the

list of labeled samples together with the model can be extended.

I implemented this classification algorithm using Extra Randomized Trees. I choose this

classifier due to its efficiency over several types of classification problems [35]. However, my

framework accepts a wide range of classifiers. Likewise, the system can learn from several

types of features. For the purposes of this work, I limit my analysis to behaviors related

to history leaking. In particular, I profile the way in which extensions interact with certain

components of the Application Programming Interface (API) exported to extensions by

Chrome.

From all API traces that are extracted, I model the way in which consecutive calls are

invoked using n-grams. This detection method has been widely explored for the identification

of malicious software. As explained in prior work [94, 110], n-grams are particularly useful

to model sequences of elements. The number associated to the “n” is the length of each

examined sequence; the system receives labeled sequences and uses them to train a classifier

in order to recognize from the sequences of an unknown sample to which label the sample

should be assigned. In this system I tried different depths of the n-grams, namely 1, 2, and

6, and the sequences are the sequences of consecutive API calls invoked by the extension.

64

4.6. EX-RAY IMPLEMENTATION

4.6 Ex-Ray Implementation

In this section I describe technical aspects of the experiments, how I exercise extensions

and collect data. The overview of the experimental setup is depicted in Figure 4.10.

4.6.1 Extension Containers

As part of the test environment, I created websites that allow scaling the size of a web

client’s browsing history without otherwise changing the behavior of the websites. I used

local web and DNS servers so that the browser could connect to the website without sending

information to the public Internet. For each execution, I started the experiment from an

empty cache in a Docker container using an instrumented Chromium binary. I exercised each

extension four times for five minutes each, capturing all generated network traffic. Capturing

traffic on the container level provides a full picture of each extension’s network interactions.

To reduce measurement noise, I blocked traffic to Google update services and CRLsets7

via DNS configuration. I also disabled browser features such as SafeBrowsing and account

synchronization.

Considering the maximum URL length of 2,083 characters, I increased the length of URLs

by 500 characters between stages. Other than changing the length of URLs used, the pages

served to the instrumented browsers did not change between stages. The maximum length of

URLs generated by us is below 1,600, leaving sufficient space for trackers that submit URLs

as GET parameters. For each execution I open 20 pages; thus, if all URLs were transmitted

uncompressed I would expect an increase of 10 KB per stage. I stored DNS information to

group IP traffic by hostname.

4.6.2 Browser Instrumentation

To collect detailed data of extension behavior I implemented a Clang LibTooling program

to rewrite Chromium source code. I instrumented the source folders extensions, chrome/b

rowser/extensions, and chrome/browser/extensions. Excluding files such as unit tests, I
7gvt1.com, redirector.gvt1.com, clients1.google.com, clients4.google.com

65

4.6. EX-RAY IMPLEMENTATION

Figure 4.9: Extensions interact with multiple servers on the Internet, sending and receiving
data. Trackers that receive browsing history behave differently than other servers. By
varying browsing history over repeated executions, patterns of trackers become apparent.

Extension Web
Store

Container Processing Cloud

Crawler

Trace Analysis

Local
Extension

Store

Flagged
Samples

PCAP
Local

Webserver
Local DNS

Execution Container

The Internet

Figure 4.10: Ex-Ray extension execution overview.

66

4.7. EVALUATION

Source Folder Files Functions Parameters

chrome/browser/extensions 385 4,967 2,548
chrome/common/extensions 34 218 176
extensions 504 5,947 3,401

Table 4.1: Instrumented files, functions, and collected parameters after running the LibTool-
ing program on the Chromium source code.

inserted 11,132 trace points in 923 files collecting 6,125 function parameters. I collect all

primitive parameters or objects that I can convert into strings.

4.7 Evaluation

In this section, I describe my evaluation of Ex-Ray: the experimental methodology, re-

sults, and discussion of findings.

4.7.1 Experimental Setting

An overview of the experimental setup is depicted in Figure 4.10.

4.7.1.1 Extension Dataset

I crawled the Chrome Web Store and downloaded extensions with 1,000 or more instal-

lations. For this analysis, I only consider extensions that can be loaded without crashing.

Examples of extensions that could not be loaded are those with manifest files that cannot

be parsed or referencing files that are missing from the extension packages. This left 10,691

extensions for Ex-Ray to analyze.

To establish baseline ground truth, I searched for different types of tracking extensions. I

did not use the extensions mentioned in Appendix 4.3 as they were not available in the store

at the time of these experiments, and the future behavior of tracker endpoints was unclear.

I mainly relied on two approaches to discover extensions:

• Heuristic search. I looked for suspicious hostnames, keywords in network traffic,

and applied heuristics to traffic patterns. Through manual verification I confirmed 100

67

4.7. EVALUATION

benign extensions and 53 privacy-violating extensions. The dataset contains different

types of samples, including aggregate data collection and delivery over HTTP(S) and

HTTP2.

• Honeypot probe. I registered extensions interacting with the honeypot and verified

38 as connecting back from the public Internet. Figure 4.1 shows a map of all incoming

connections with respect to the time I exercised the extension with unique URLs in

the history. Table 4.2 shows the most installed five malicious extensions with domains

connecting to the honeypot. Connections often appear immediately after running the

extension, but I detected deferred crawls as well.

I excluded VPN and proxy extensions that redirect traffic through a remote address

as these are not part of the threat model. The connecting clients performed no malicious

activities I could identify in the log files. The hostnames of clients that connected to us

varied widely. The most popular one was kontera.com with 704 connections, followed by

AWS endpoints. Surprisingly, I received many requests from home broadband connections,

such as *.netbynet.ru, often connecting only once. However, I connected four graphs of

extensions that were contacted from the same hosts. The biggest graph connected eight

extensions with two hosts. The other graphs connected five, two, and two extensions.

12 of these extensions were removed from the Chrome Web Store before the experiments

concluded.

4.7.2 Ex-Ray Results

4.7.2.1 Tuning of the Unsupervised Component

The first step of Ex-Ray consists of applying linear regression for counterfactual analysis.

The linear regression test flags flows if they respect the three parameters explained in Sec-

tion 4.5.2. To find the best configuration of these parameters, it is necessary to evaluate the

results on a labeled dataset. I used F-Measure as a comparison metric. The strictest policy

checks for a minimum of five URLs leaked, a 2% minimum slope, and 90% accuracy. This

policy results in an F-Measure of 96.9% and no false positives.

68

4.7. EVALUATION

Extension Name installations Connecting from

Stylish - Custom themes 1,671,326 *.bb.netbynet.ru, *.moscow.rt.ru,
*.spb.ertelecom.ru

Pop Up Blocker for Chrome 1,151,178 *.aws.kontera.com, 176.15.177.229,
*.bb.netbynet.ru

Desprotetor de Links 251,016 *.aws.kontera.com, *.moscow.rt.ru,
*.bb.netbynet.ru

Открытые вкладки (Open Tabs) 97,204 *.dnepro.net, 109.166.71.185,
*.k-telecom.org

Similar Sites 45,053 *.aws.kontera.com, *.moscow.rt.ru,
*.netbynet.ru

Table 4.2: Top five extensions connecting to the honeypot with highest installation numbers
which are still available in the Chrome Web Store.

To obtain better results, in the final configuration I used two less strict configurations

and flagged as suspicious all flows flagged in both engines. Both configurations check for a

minimum of two URLs leaked and 2% minimum slope. However, there is a difference in the

last check: while one used 90% accuracy in checking only the lower bound, the other one

used 80% accuracy checking both the upper and lower bound. As such, the first and the

last checks are less strict, but the F-Measure did not decrease even if a larger area of the

feature space can be flagged. The system correctly flagged more flows as with the stricter

configuration, but the flows belonged to the same extensions already flagged by the previous

system.

4.7.2.2 Labeling Performance

Ex-Ray flagged 212 extensions out of 10,691 as history leaking using the linear regression

on the traffic sent by the extensions. By checking manually, I noticed that not all the

extensions flagged were history leaking. Out of 212 samples, 184 were leaking, two were

goodware, and 26 were unclear. It has not been possible to determine if among those 26

extensions there were ones leaking or not. Therefore, to provide a conservative evaluation, I

consider Ex-Ray to have 28 benign extensions wrongly identified as history leaking.

As mentioned earlier, detection systems can be prone to false negatives. To measure

this for Ex-Ray, I spot-checked a representative sample of extensions reported as benign.

69

4.7. EVALUATION

To establish baseline false negatives I scanned the pcap files for leaks and reimplemented

another system used for brute-force searching extension traffic for obfuscated strings with a

fixed set of algorithms [88]. This system flagged 367 extensions which I used for the dataset.

The false negative samples I subjected to examination numbered 178. These results lead to

a precision of 87%, a recall value equal to 50.13%, and an F1-Measure value equal to 63.66%.

The overall accuracy value is 98.03%. These values are reached using only the first step

of Ex-Ray that is a completely unsupervised algorithm. As I show below, these results are

further improved by the next phases of the system.

Among the extensions flagged by Ex-Ray, there are some noteworthy case studies (such

as the Web of Trust extension) which are discussed thoroughly in Section 4.4.

4.7.2.3 Prioritizing Extensions

Extensions processed in the previous step are then ranked using the score function defined

in Section 4.5.3. Ideally, a triage system should prioritize extensions that are more likely

to be privacy-violating than others. This way, the analyst can invest most of his efforts on

specimens that are likely to be worth exploring. Together with a ranking of the extensions,

Ex-Ray provide a report with an informative breakdown of the contribution of each network

flow to the overall score. This is also useful to the analyst for further manual investigation.

I next show snippets of a triage report for three extensions that are ranked high, medium,

and low:

70

4.7. EVALUATION

QR Code Generator (cicimfkkbejhggfjaabggafffgdnjgjp)

4e+18 connectionstrenth.com

394.88 a.pnamic.com

28.22 eluxer.net

4.48 rules.similardeals.net

1.16 code.jquery.com

Kizi - Free Fun Games (pmmbokildidpgafchfmebmhpoeiganhj)

89.22 static-opt1.kizi.com

89.22 cdn-opt0.kizi.com

89.29 cdn-opt1.kizi.com

6.12 tpc.googlesyndication.com

3.15 securepubads.g.doubleclick.net

Bible Quote of the Day (pogchimbndbckepmhaagnapfmlfgnala)

1.00 www.gstatic.com

1.00 chromium-i18n.appspot.com

1.00 ssl.gstatic.com

1.00 localhost

0.67 www.google.com

The snippet first displays the name and unique identifier of the extension, followed by

the score given to each of the network flows used to allegedly leak the history. As mentioned

before, I group network flows by hostname using DNS information captured during the

execution. When considering the thresholds introduced in Equation 4.3, the recommendation

given by the triage system for these three extensions is likely-leaking, possibly-leaking,

and not-leaking respectively.

As mentioned, these recommendations are manually verified. The analysis starts with

review of the source code, looking for access to chrome.tabs, chrome.webRequest interception,

and other methods of history access. Next, an analyst checks for elements inserted into the

DOM that leak the referrer. Finally, requests generated by the background scripts and other

recorded network traffic is checked.

71

4.7. EVALUATION

To quantify the performance of the triage system, I first study how the triage system

ranks extensions given by the unsupervised system with respect to the baseline ground truth

described above (see Section 4.6). 73 extensions are flagged as likely-leaking. Out of those,

all but one were manually verified to leak (99%).

Next, the analyst is tasked with verifying 121 additional extensions from the possib-

ly-leaking category. Out of those, only one is confirmed to be benign, 24 are marked as

“unclear,” and the rest (80%) are confirmed to leak. When ordering the triage score from

the bottom, it is easy to find extensions that behave legitimately. For the purpose of this

work, the analyst vetted approximately 100 extensions as not-leaking.

I emphasize that the purpose of this phase is not to exhaustively label all leaking exten-

sions, nor to obtain a comprehensive understanding of non-leaking extensions. Instead, the

aim is to obtain a slice of those extensions where the quality of the ground truth is enough

to apply supervised learning. As a byproduct of this manual verification, I have gained a

number of insights into the ecosystem of unwanted extensions which is discussed later in the

Section 3.5.

4.7.2.4 Classification Results

The last experiment evaluates the effectiveness of the supervised system introduced in

Section 4.5.4. I aim at understanding the performance of Ex-Ray in classifying leaking

extensions using API call traces.

I rely on the dataset labeled and vetted in previous stages of this experimentation. I split

the dataset between training and testing set using a k-fold cross-validation approach, which

has been widely applied in the past [74].

To collect behavioral data from extensions, I implemented a Clang LibTooling program

that instruments Chromium’s source code. In particular, I instrumented the following com-

ponents of the Chromium framework: extensions, chrome/browser/extensions, and chro-

me/browser/extensions.8

To evaluate the results, I refer to precision (or positive predictive value) and recall (or

sensitivity). With reference to detecting leaking extensions, I judge the performance by
8Excluding unit tests files, I inserted 11,132 trace points in 923 files collecting 6,125 function parameters.

72

4.7. EVALUATION

Type Prec. Recall ACC F1

n-gram=1 87.36% 98.19% 87.30% 92.46%
n-gram=2 93.56% 99.49% 94.14% 96.43%
n-gram=6 92.18% 99.23% 92.70% 95.58%

Table 4.3: n-gram classification results for varying n.

the F1-score, as it represents the harmonic mean of precision and recall. For the sake of

completeness I also report the proportion of correct predictions (accuracy).

Table 4.3 shows results over a 5-fold split using random sampling. Classification results

indicate that I can accurately identify when extensions are leaking by examining at their

behavior. After evaluating different sizes of n-grams, I obtained the best results with n = 2

at 96.43% F1 followed by n = 6. When looking at the histogram of APIs executed by the

extension (n = 1), the performance drops about 7%.

Among the most informative features in the best setting, I can observe calls to different

API packages related to the manipulation of URLs such as extensions.common.url_pattern,

as well as the manipulation of runtime code (JavaScript) associated with the preferences of

an extension. In particular, the following two API calls are predominantly seen together in

leaking extensions: extensions.browser.extension_prefs.GetExtensionPref() → chrome.brow-

ser.extensions.shared_user_script_master.GetScriptsMetadata().

4.7.2.5 Comparison to DNS Blacklist Approaches

While tracking in extensions is bypassing adblockers in browsers, other approaches are

possible. Blocking of ads and trackers via DNS is an option, examples are AdAway9 or

PI Hole10. To use such blockers client devices (desktop computers or mobile devices) are

configured to use such a DNS server. Queries to hosts which are considered ads or trackers

are resolved to 127.0.0.1, otherwise the name will be resolved correctly. Such DNS-based

blocking has advantages such as not requiring installation of client-side software or prevent-

ing tracking on a lower level. Disadvantages are that domains might be used for multiple

purposes, and if flagged as tracker the domain becomes inaccessible for benign requests too.
9https://adaway.org/

10https://pi-hole.net

73

https://adaway.org/
https://pi-hole.net

4.8. DISCUSSION

I compare results of the unsupervised component to such DNS blacklists. 212 extensions

were flagged by the unsupervised component, out of which 184 were manually confirmed to

leak. These extensions leaked browsing history to 209 different hosts. Furthermore 35 hosts

were wrongly flagged as history-leaking.

Out of the 209 flagged hosts only 28 were blocked via DNS blocking. And out of the

mislabeled 35 hosts 12 matched the blocked list.

The takeaways are two-fold:

1. Few of the verified leaking hosts (13%) can be flagged via DNS blocking. However,

such blocking could still reduce the impact of history leaking browser extensions.

2. A third of the mislabeled hosts (34%) were identified as ads or trackers. This suggests

that although these hosts were not in scope for the used threat model, the component

identified potentially suspicious activity.

To summarize, DNS blocking would not be sufficient to prevent history leaking through

browser extensions, but could reduce the impact. Due to ease of configuration blocking ads

and trackers via DNS is a promising blocking technology.

4.8 Discussion

In this section, I describe and discuss a number of findings resulting from this work.

I present the most prevalent types of trackers and discuss their fundamental differences

together with the issues due to invasive tracking. Finally, I discuss evasion strategies.

4.8.1 Browser-enabled Tracking

Trackers are popular on websites and well-studied. However, they are fundamentally

different from tracking in browser extensions. Websites need to opt-in to use a tracker, and

their scope is limited to their own website unless purposefully shared. Furthermore, visitors

can use tracker-blockers to opt-out of tracking with extensions such as Ghostery. Conversely,

in browser extensions the scope of tracking is not limited to a single website, but collects

74

4.8. DISCUSSION

information on all websites the extension has permission to access. Furthermore, no tools

exist to reduce the impact of privacy on the user.

Mozilla Firefox Using a prototype I developed for Firefox extensions, I scanned the

most popular available ones in the store. I found five extensions with over 400,000 total

installations which were tracking user behavior outside of extensions, and reported them

to Mozilla. Out of these, three were removed from the store because they did not disclose

tracking in their privacy statement. However, this type of tracking is generally tolerated for

Firefox, and as a result I have not further pursued notifications on that platform.

4.8.2 Foundations Towards Solutions

A combination of these suggested solutions would palliate the problem of invasive tracking

in browser extensions.

• Analyze extensions submitted to extension stores with tools that check for tracking

behavior, such as the proposed Ex-Ray system. Users can then be warned that their

browsing history will potentially be leaked.

• Implement a new browser extension API to inspect and block traffic to trackers gener-

ated by other extensions in background scripts. No such API currently exists. Filtering

approaches have proven effective for tracking on websites, and Ex-Ray could be inte-

grated into this model and extended to filter background traffic.

• Consider invasive tracking as a violation of the single purpose rule in extension stores,

analogously to ad injection.

4.8.3 Evasion

Malware evasion is a well-explored area and is part of the arms race between attackers and

defenders. Examples of this include fingerprinting analysis environments or creating more

stealthy programs. While no ultimate solutions exist for these problems, Ex-Ray addresses

tracking at a fundamental level.

75

4.9. FUTURE WORK

Another approach would be to lay dormant and only leak at a later point in time. How-

ever, I have seen with the honeypot experiments that if leaks are utilized, this often happens

immediately. Furthermore, there is an economic incentive on the part of attackers to obtain

and monetize leaked history as quickly as possible before its value begins to degrade.

Extensions could also pad sent history to show stable traffic behavior or create noise.

However, this would either limit the leakage capacity or be easy to detect from simple

checks applied by current defense systems if extensions regularly send large amounts of data

to mask leakage.

4.9 Future Work

Ex-Ray’s goal is to flag extensions that collect private data such as browsing history and

exfiltrate it to third parties. An actor with the goal to collect user data is interested in

collecting data in real time, which is supported by the samples I analyzed.

It is possible that extensions only exfiltrate data after waiting for a period longer than

my tests. However, this is at odds with economic incentives due to the decreasing value of

stolen data over time, and is thus unlikely from the perspective of the malicious actor.

Extensions that are narrow in scope, e.g., that collect data for a specific website, would

not be flagged by my system. I consider stealing of private information on a wider scale. To

enhance this system, an approach similar to honeypages in Hulk [50] could be used.

Browsing data could be aggregated by extensions and only transmitted at a later point.

However, tracking for the purpose of analysis of large-scale user behavior requires timely data

on all websites. The scope of this work is identifying wholesale tracking through extensions.

Malicious software that only triggers on narrow conditions can be impossible to exercise.

For example, authors could assemble code based on environmental parameters unknown to

analysts. A famous example is the Gauss malware.11 This malware will only trigger on

computers that have a specific configuration and is otherwise not decryptable. Global efforts

to analyze this malware have failed to date.
11http://arstechnica.com/security/2013/03/the-worlds-most-mysterious-potentially-destructive-

malware-is-not-stuxnet/

76

http://arstechnica.com/security/2013/03/the-worlds-most-mysterious-potentially-destructive-malware-is-not-stuxnet/
http://arstechnica.com/security/2013/03/the-worlds-most-mysterious-potentially-destructive-malware-is-not-stuxnet/

4.10. CHAPTER SUMMARY

Knowing the specifics of my tool, malicious developers could apply evasion techniques,

for example transferring a constant amount of data per visited website by padding URLs or

captured keystrokes. Evasion is a general concern for any detection system and there exist

several avenues to address this [55].

4.10 Chapter Summary

With this work I introduce new methods of detecting privacy-violating browser extensions

independently of their protocol. I use a combination of supervised and unsupervised methods

to find features characteristic to tracking in extensions. I implement Ex-Ray, a prototype

implementation of my approach for the Chrome browser, and find two extensions in the

official Chrome Web Store which leak private information in previously undetectable ways.

Privacy leaks in browser extensions are in an arms race, with extensions evading known

methods of detection of previous work. I suggest that extensions should be both tested

more rigorously when admitted to the store, as well as monitored while they execute within

browsers.

77

Chapter 5

SPA Rewriting to Enhance

Vulnerability Discovery

5.1 Introduction

Developers introduce programming mistakes through oversight, which can lead to ex-

ploitable vulnerabilities. Integration of bug-finding tools into the build process is considered

best-practice. One example of such techniques is fuzzing, which is part of the Microsoft

Security Development Lifecycle1. Such penetration testing tools play a critical role in find-

ing vulnerabilities in programs. Tools as these can help identify vulnerabilities before an

application is deployed and can be exploited.

Unfortunately, most of these Web pentesting tools consider Web applications only as

server-side programs, following a paradigm of request and response transitions. As more

code is deployed on the client-side, introspection of these programs presents a roadblock for

finding vulnerabilities. Transitions in client-side program states are not represented through

a request/response pair, but interactions with the application that are purely client-side. As

applications can be implemented in a variety of different frameworks, singular interaction

strategies are difficult. Exploration of JavaScript programs is a feature that is not widely

supported by penetration testing tools.
1https://www.microsoft.com/en-us/sdl

78

https://www.microsoft.com/en-us/sdl

5.1. INTRODUCTION

This chapter consists of two mains parts. First, I measure how well adept penetration

testing tools are to modern Single Page Applications (SPA). Second, based on the state of

the art and shortcomings of these tools in regards of SPAs, I introduce a prototype, SPARE,

that rewrites SPAs to the request/response paradigm.

The results of this study demonstrate that the current offerings of black-box vulnerability

scanners lack the capabilities vital to keep up with progressive technologies. The shift of

program code from the server to the client has not been followed by these penetration

testing tools. The scanners need to overcome a number of challenges when testing modern

web applications, and even though some tools have begun undertaking this task, even these

are lacking. Of the analyzed scanners only three could execute JavaScript: Acunetix, IBM

Security AppScan, and Google Cloud Security Scanner. However, limitations in JavaScript

capabilities prevents penetration testing tools from discovering vulnerabilities in SPAs.

Although a tool may be sophisticated, shortcomings in one area can lead to failure as

a whole. Acunetix was fairly sophisticated, yet it is unable to handle Backbone’s event

binding. These tools must develop an ability to better interface with client-side applications

to explore them correctly to uncover security flaws.

The SPARE prototype can push client-side code to be rendered on the server, shifting

the paradigm. With this approach SPAs can be lead into the traditional request/response

paradigm and enhance access scanners have to applications.

The prototype moves the program state as it would be represented in the client-side

application back to a server-side DOM, and offers interactions in a format that traditional

penetration testing tools can interact with. These tools are often closed source an cannot

be modified, therefore rewriting SPAs is necessary to become compatible. It enables us to

leverage the benefits of existing scanners without modifying them.

The contributions of this work are as follows:

• I evaluate 13 state-of-the-art black-box web application vulnerability scanners against

three client-side web application frameworks.

• By analyzing the evaluation results, I identify a number of challenges that Web ap-

plication vulnerability scanners must overcome in order to properly crawl and fuzz

79

5.2. MOTIVATION

client-side web applications.

• I show, by the results of this analysis, that client-side Web application are fundamen-

tally different from server-side web applications, and, therefore, require novel tech-

niques to perform automated vulnerability analysis.

• I introduce a prototype, SPARE, that overcomes some of the limitations imposed on

Web penetration testing tools, by rewriting SPAs into the request/response paradigm.

5.2 Motivation

This work aims to both evaluate the state of the art of client-side web penetration testing

scanners with regards of SPAs, and advance it. Black-box penetration testing tools are often

used to find vulnerabilities in web applications before they are widely deployed. These point-

and-click solutions provide an important baseline for vulnerability discovery before manual

search for vulnerabilities.

These scanners take multiple steps to identify a vulnerability, crawling is the first one.

Deficiencies in crawling will prevent detection of vulnerabilities in later steps. Prior work

has evaluated server-side black-box scanners [31], concluding that vulnerabilities are often

overlooked. However, the request / response paradigm is well-understood for such tools, and

yet it is challenging for these tools. How interacting with SPAs compared to traditional

web application scanning was unclear. SPAs provide a paradigm shift in interaction, as

JavaScript became an essential part of web applications. As no comparable work on SPAs

exists, it is a pressing topic to explore.

5.2.1 Threat Model

For the scope of this chapter I assume that both the browser and underlying operating

system are trusted and free of vulnerabilities. As the client-side web application is exe-

cuted in the browser, malware or rootkits installed on the same computer could compromise

applications running in the browser, or any data it operates on. The target of black-box

80

5.3. SYSTEM OVERVIEW

vulnerability scanners is to find vulnerabilities in the application itself, rather than in the

underlying layers.

For an attacker the threat model of SPAs is comparable to those of server-side web ap-

plications. Examples of vulnerabilities that a black-box vulnerability scanner finds are when

an attacker can manipulate input to the client-side web application to perform operations

on behalf of a legitimate user. Such attacks would compromise security aspects as either the

confidentiality, integrity, or availability of the application.

An example of a client-side vulnerability is DOM-based XSS where an attacker is able

to execute data as code, leading to execution of untrusted code on behalf of the program.

Consequences of DOM-based XSS are similar to XSS in a traditional server-side web appli-

cation.

5.3 System Overview

This section is divided into tools developed for analysis of effectiveness of black-box

testing tools, and rewriting SPAs to become easier to scan by such tools. To assess function-

ality I used a capabilities test with JavaScript code instrumentation, and a tool to evaluate

the generated traces. For rewriting SPAs to become compatible with scanners, I created a

NodeJS application that uses a server-side DOM to keep state, acting as a proxy to pre-render

JavaScript execution.

5.3.1 JavaScript Instrumentation

The instrumentation is built on top of Google Closure Compiler [6]. Instrumentation is

applied on a function level, collecting traces on function invocation and exit. The process

is based on code used for the ZigZag [108] project. A patch that allows configuration of

instrumentation externally was accepted upstream.

With each function invocation execution trace data is collected. The collected data in-

cludes the filename, unique function id, function name (as string), invocation type (entry

or exit), URL of invocation (href), and arguments used. For each collection event a POST

81

5.3. SYSTEM OVERVIEW

1 function x(a, b) {
2 // function body
3 ...
4 return a+b;
5 }

Figure 5.1: Function before performing instrumentation.

1 function x(a, b) {
2 __calltrace(functionid);
3 // function body
4 ...
5 return __exittrace(functionid, a+b);
6 }

Figure 5.2: Function after instrumentation

request to the data collection server is sent. Examples of a function before and after instru-

mentation are displayed in Figures 5.1 and 5.2, trace collection code is shown in Figure 5.3.

5.3.2 Vulnerability Scanner Capability Test and Log Analysis

The test application contains challenges for crawling and finding of exploits. While the

application is executed, the instrumented code is collecting trace data. The log analysis

component consumes traces to interpret the capability test by the log analysis component.

The result of this test is an assessment of how well a penetration testing tool can explore the

application. Relevant metrics are code coverage but also callgraphs can be reconstructed by

matching invocation ids.

Shortcomings of scanner capabilities can be used as motivation for rewriting SPAs to

become compatible. E.g., for a scanner that does not support event binding, an SPA can be

rewritten to display a elements instead.

Various crawling challenges were used to test capabilities. Some of these difficulties reflect

variations in the designs of the implemented frameworks. It should be noted that each of

these challenges requires the crawling module to execute JavaScript, as this is a fundamental

task in order to evaluate client-side web applications. However, the challenges test to what

extent the scanners are able to interact with these JavaScript applications.

82

5.3. SYSTEM OVERVIEW

1 function __calltrace(functionid) {
2 var a = {};
3 a[”seq”] = ++globalseq;
4 a[”filename”] = ”app.js”;
5 a[”fun_id”] = functionid;
6 a[”type”] = ”entry”;
7 a[”function_name”] = get_function_name(arguments.callee.caller);
8 a[”href”] = document.location.href;
9 a[”args”] = _flatten_args(arguments.callee.caller.arguments);
10 a[”unique_id”] = uniqueid;
11 $.ajax({method:”POST”, url:”http://datadumper.example.com”,
12 data:JSON.stringify(a)});
13 }

Figure 5.3: Data-collection function which is invoked on each function entry. The call
sends all relevant tracing information to a trace collection server. The exit-function operates
similarly, except that it is invoked with the return value, which is passed back.

Furthermore, I consider CAPTCHAs [100] as out of scope the analysis. CAPTCHAs are

a technique used to prevent unauthorized, automated access to websites. In the use-case of

performing an authorized pentest on website they can be disabled.

Event binding: In traditional web applications, a button or link that corresponded to

an action would load a new page from the server based on the associated href or action

attribute. In one of the biggest changes brought about by client-side applications, rather

than generate a new page based on an action, event binding enables the application to run

JavaScript code in response to the action without the need to change the page. This dif-

ference presents a difficulty to the traditional crawling tactic of parsing a page for hrefs

and actions and then requesting the resulting pages. Now an application can run code and

optionally change pages through JavaScript instead, as done throughout the test application.

Data binding: Another distinction between client-side web applications and traditional

web applications is that client-side applications dynamically modify the web page using Java-

Script. While traditional applications reload the entire page sent from the server, client-side

apps can run code in the web browser to modify portions of the page without reloading it

entirely. The crawling module must be able to register changes that occur on the same page

83

5.4. SPARE–SPA REWRITING FOR EXPLOITABILITY

and subsequently handle the new elements that were introduced.

Delayed redirect: A delayed redirect is used for one of the pages in the test app.

When the corresponding button is clicked, the application presents a loading page and then

switches to another page after three seconds. This functionality tests if the crawling module

can handle a real-world flow rather than only load a page, quickly extract its links, and move

on.

Required/non-empty text field: When creating a new entry or searching for entries,

the test application only continues if text has been entered in the text field or search query

field. This is done by both setting the required HTML attribute (an HTML5 feature) and

enforcing it with JavaScript. Doing so tests if the vulnerability scanner correctly fills in input

fields.

Checkbox: Included on the one of the pages is a checkbox that, if checked, will perform

the search when the corresponding button is clicked. If not checked, the application will

navigate back to the start page. This serves to test if the crawler handles control elements

and evaluates scenarios with and without them.

5.4 SPARE–SPA Rewriting for Exploitability

SPAs include elements which vulnerability testing tools only partially can interact with,

or cannot interact with at all. After receiving the HTML document JavaScript is loaded,

adding interaction elements such as event binding. While an interactive client can change

views or manipulate data, vulnerability scanners that will not execute JavaScript cannot

reach this functionality. For penetration testing tools that have no capability to support

JavaScript this restricts vulnerability discovery capabilities. Furthermore, even if JavaScript

is partially supported through a limited execution environment, this can also limit scanners’

efforts of exploring the application.

84

5.4. SPARE–SPA REWRITING FOR EXPLOITABILITY

Client Server

HTML

JavaScript

Dynamic
DOM

Change views

Store / Retrieve Data

Figure 5.4: SPAs, consisting of HTML and JavaScript code are transferred to the client.
Users interact with the SPA locally, state changes are not visible to the server. Except, if
data is explicitly sent to the server.

Server

HTML

JavaScript

Dynamic
DOM

Change views

Store / Retrieve
Data

Client

Static
DOM

Figure 5.5: After rewriting a SPA, the DOM state is stored on the server-side, encapsu-
lating client-side features. Users (or penetration testing tools) can interact with it in the
request/response paradigm. The DOM is rendered server-side and the result returned as a
static document. The state becomes visible to the server.

85

5.4. SPARE–SPA REWRITING FOR EXPLOITABILITY

To this end, I wrote SPARE (SPA Rewriting for Exploitability), a prototype NodeJS

server that shifts the execution of program logic from the client to the server. Vulnerability

scanners are presented with a compatible version of the program that allows for penetration

testing. The server acts as proxy between a scanner and an application it would not be able

to test otherwise. The system is a prototype operating in semi-automated fashion, and was

implemented to rewrite Angular applications, one of the most popular frameworks in use for

SPAs.

SPAs often use the localStorage API 2 to store data between sessions. As jsdom does

not support localStorage, to overcome this shortcoming I use a wrapper around localStorage

methods to transparently write to and read from cookies.

The system uses a virtual DOM on the server-side that was implemented on top of

jsdom3. The jsdom package implements a subset of the browser that is sufficient for rendering

pages for vulnerability scanners. The rewriting includes translation of views into routes,

and management of program state via cookies. An overview of regular SPAs is depicted

in Figure 5.4, and after rewriting in Figure 5.5. When the server receives a request, the

following actions are performed:

1. Create DOM based on request parameters. The DOM includes all resources which

would be used in the regular environment for that SPA.

2. Restore state from cookies. If cookies are included in the request, SPARE will re-

store them before creating a new DOM. Cookies are accessed through a transparent

localStorage wrapper as jsdom does not support localStorage.

3. Apply action based on request and state by injecting generated JavaScript code. This

can include changing views or adding data to the application.

4. Remove all JavaScript elements: script files and inline code. The DOM is reduced to

a static version by removing all dynamic elements.
2https://www.w3.org/TR/webstorage/
3https://github.com/jsdom/jsdom

86

https://www.w3.org/TR/webstorage/
https://github.com/jsdom/jsdom

5.4. SPARE–SPA REWRITING FOR EXPLOITABILITY

5. Iterate through possible view changes, add hyperlink elements and register them as

new routes in the server. The added hyperlinks make the application more accessible

to scanners and crawlers.

6. Rewrite forms to routes to allow saving data. SPA forms become POST routes that

store data via code injection.

7. Return rendered DOM as static HTML document, carrying state in cookie.

5.4.1 State Management and Manipulation

The prototype implementation of SPARE creates a new DOM for every request, applying

state from cookies. The server-side DOM is stateless, as state is carried exclusively in the

cookie and DOM is discarded after the request. I receive cookies from the client-browser,

apply them to the server-side DOM, and respond with an updated cookie. SPAs can store

data in localStorage, a feature that is not supported by jsdom, the prototype redirects access

to localStorage to cookies.

Cookies are limited in size (4093 Byte) and represent a limitation of the prototype. The

system could be extended through a server-side database holding state, and only using the

cookie to store a reference to state in a database. As speed optimization, DOM instances

could be cached between sessions.

Forms are rewritten to POST routes, where the submitted data is applied to the program

state by injecting generated code, accessing internal Angular calls directly. An example for a

template triggering is displayed in Figure 5.7. The program is executed right after injecting

it as a script tag. Before sending the rendered DOM as a response, all program code is

removed, including such injected code.

5.4.2 Accessibility of views

Penetration testing tools have shortcomings in exploring applications (crawling). A sug-

gested solution is to make all views accessible, by rewriting views as routes, and adding links

to these to the main page. As such, views which are otherwise inaccessible become directly

87

5.5. EVALUATION

Client Browser Server Server-Side DOM

Program state (Cookie)
Action (URL)
[Data (POST)]

Program state (Cookie)
Action (URL)
[Data (POST)] 1.) Create new DOM

2.) Restore state (from cookie)
3.) Apply action [with POST data]
4.) Remove script elements
5.) Synchronize state to cookie
6.) Render response DOM

Scriptless Rendered DOM
Program state (Cookie)

Scriptless Rendered DOM
Program state (Cookie)

Figure 5.6: Overview of data transferred and actions taken with each state change for a
rewritten SPA.

1 (function (){
2 $(”div[ng-controller=’%CONTROLLER%’]”).scope().%ACTION%(%POSTDATA%)
3 })();

Figure 5.7: Route and action-specific code injection into JSDOM object. The code is added
to the DOM as a new script element, executed immediately, and removed from the DOM
before being rendered for a response.

reachable. A limitation of this approach is that views could require specific actions to be

taken earlier to render correctly. As all views are offered, this could lead to errors while

executing the program.

5.5 Evaluation

I tested 13 black-box vulnerability scanners and one crawler (Crawljax [26]) by running

them against each version of the test application. To decide on the scanners to evaluate,

I used a website maintained by Chen [24], which lists current black-box web vulnerability

scanners. For the commercial scanners, I used all those which offered trial versions, and I

used as many of the open-source tools as possible, however I was unable to evaluate them

all, due to time constraints.

The scanners were composed of 6 open source tools (Grabber [37], Skipfish [39], Vega [90],

88

5.5. EVALUATION

Name Version License
Acunetix 9.5 Build 20140903 Commercial
Crawljax 3.5.1 ASFv2
Google Cloud Se-
curity Scanner

N/A Commercial

Grabber 0.1 BSD
IBM Security App-
Scan

9.0.2 Commercial

ParosPro 1.9.12 Commercial
N-Stalker 10.14.1.5 Commercial
Skipfish 2.10b ASFv2
Tinfoil Security N/A Commercial
Vega 1.0 EPL1
w3af 1.6.0.5 GPLv2
Wapiti 2.3.0 GPLv2
WebInspect 10.30.507.10 Commercial
ZED Attack Proxy 2.3.1 ASFv2

Table 5.1: Characteristics of the scanners evaluated

w3af [101], Wapiti [91], and ZED Attack Proxy [69]) and 7 commercial tools (Acunetix [11],

Google Cloud Security Scanner [40, 57], IBM Security AppScan [47], ParosPro [63], N-

Stalker [64], Tinfoil Security [97], and WebInspect [45]). Although I used evaluation versions

of the commercial tools, each made available the functionality necessary for these tests. A

summary of these tools is presented in Table 5.1, which contains the name of the scanner,

the version used, and the license information. The cloud-based scanners have N/A as their

version, as they have no externally visible version information.

5.5.1 Setup

Each scanner was run against the Angular, Backbone, and Ember implementations of

the test application with both default and manual configuration (for a total of 84 runs).

The manual configuration consisted of enabling any useful options pertaining to crawling,

JavaScript evaluation, and cross-site scripting (XSS) [12]. Beyond this, the scanner was

simply pointed to the web page and instructed to start scanning.

Google Cloud Security Scanner deserves special mention, as it is a cloud-based black-box

web vulnerability scanner that only scans applications on Google App Engine. To test Google

Cloud Security Scanner, I ported each implementation of the test application to Google App

Engine. Using the Google developer console, separate projects were created for each version

of the app. I created a configuration file for each version called app.yaml. This file had

directives to Google App Engine, describing how the files should be deployed. No other code

89

5.5. EVALUATION

changes were required, and the functionality of the Google App Engine application instances

were the same.

5.5.2 Evaluation of Existing Black-box Systems

When evaluating scanners against a traditional server-side web application, the HTTP

requests and responses made by the scanner give insight into how the tool works. In the case

of client-side web applications, there is no HTTP requests and responses, as all changes to

the application state take place within the DOM. Therefore, I devised a method to try to

understand how the scanner was crawling and interacting with the client-side web application,

and therefore the capabilities of the scanner.

I determined the capabilities of the scanners in a black-box manner, so that the technique

would be applicable to the commercial as well as the open-source tools. To determine if

the scanner has the ability to execute JavaScript, after the DOM [102] of each page of the

application loaded, using JavaScript I inserted an image reference (img HTML tag). The src

attribute of the tag would be the server, so that by looking at the log of the server I could

determine which pages of the application were visited and executed (each img tag contained

a unique src attribute). To ensure that these src attributes would not be discovered by

parsing, they were obfuscated in the JavaScript code.

As an additional assurance of the capabilities of the scanner, I included a form containing

a text field, and the action attribute of the form contained a URL with an intentional XSS

vulnerability. In this way, I could use the vulnerability reports of the scanner to determine

how much of the application the scanner was able to reach.

5.5.3 Crawling Results

Based on the tests, only three of the tools (Acunetix, Google Cloud Security Scanner,

and Crawljax) were able to execute JavaScript and interact with the application. Because

Crawljax is solely a crawler and uses a web browser to navigate, Acunetix and Google Cloud

Security Scanner are the only black-box scanners tested that were able to execute JavaScript

code. ZED Attack Proxy provides a traditional crawler and has an AJAX crawler plugin avail-

90

5.5. EVALUATION

About About-Load Created Edit
Note Home New

Note Search Search
Tags

Search
Results

View
Note %

Acunetix
-Angular 3 3 3 3 40%
-Backbone 3 3 3 30%
-Ember 3 3 3 3 3 50%
Crawljax
-Angular 3 3 3 3 3 50%
-Backbone 3 3 3 3 3 3 60%
-Ember 3 3 3 3 3 50%
Google CSS
-Angular 3 3 3 3 40%
-Backbone 3 3 3 3 3 3 3 3 3 3 100%
-Ember 3 3 3 3 3 3 3 3 3 3 100%

Table 5.2: Pages reached without any modifications to the testing application

able to download, but because this plugin uses Crawljax and is not included by default, I

did not consider ZAP itself able to execute JavaScript. WebInspect was able to locate all of

the XSS vulnerabilities, but because this was done through parsing the intentional href and

action attributes it is not an indication of the completion of the crawling challenges. IBM

Security AppScan includes a JavaScript Security Analyzer extension which is supposed to

detect client-side vulnerabilities, however IBM Security AppScan was not able to interact

with the application. It reached the index page, which has a form containing an XSS vulner-

ability, but it did not report the vulnerability. The remaining scanners did not report any

of the XSS vulnerabilities, which constitutes a failure of the most basic test and suggests a

possible bug in their HTML parsing or JavaScript execution abilities.

Considering that only Acunetix, Google Cloud Security Scanner, and Crawljax exe-

cute JavaScript, I will focus mainly on their performance against the crawling challenges.

These three tools had a varying degree of success with both the challenges and the different

JavaScript frameworks, as seen in Table 5.2.

An important detail to note here is that Acunetix was unable to handle Backbone’s event

binding. As a result I was unable to fully assess Acunetix against many of the other crawling

challenges implemented with Backbone, however I can still make inferences about Acunetix’s

overall capabilities based on its performance against the other two frameworks, along with

a version of the test application that was specifically modified to test Acunetix.

Event binding: While Crawljax successfully navigated the test application via the but-

91

5.5. EVALUATION

tons bound to events, Acunetix had a mixed degree of success. It was able to successfully

handle both {{action}} and {{link-to}} in Ember but could not handle any of Backbone’s

view events. With Angular it executed only some events and not others, even when the

triggering buttons were directly next to one another and implemented in the same fashion.

For example, there are two buttons which are side by side on the main page, yet only one of

the paths was followed and the other was not visited. I was unable to determine the reason

for this or the crawling methods employed by Acunetix. Google Cloud Security Scanner was

able to navigate and reach only some of the pages in Angular, however it was able to reach

all pages in both Backbone and Ember.

Data binding: Because the pages of the application were crawled in the order that they

were found, the tools evaluated the Home page first and then moved on to the others. The

table of existing notes is updated dynamically when the internal model changes, thus the

tools must be able to detect and consider this change to a page that they previously eval-

uated, as this is the only way to view a newly created note. Crawljax was unsuccessful in

viewing a created note in all of the frameworks while Acunetix succeeded with Angular and

Ember. Acunetix “failed” with Backbone due to its inability to handle the event generated

by clicking on a note in the table, but it succeeded when the event was changed to an href.

Therefore, Acunetixcan handle data binding in all three frameworks, but its shortcoming

in another area prevented it from doing so without modification. Google Cloud Security

Scanner was able to create, view, and delete notes in the Angular, Backbone, and Ember

versions of the app.

Delayed redirect: Without any execution parameters, Crawljax was unable to handle

the delayed redirect because it would move on from a page too quickly. Only once the

-waitAfterEvent argument was specified, which told it to pause longer than the 3 second

“loading,” could it handle the redirect in all three of the frameworks. Acunetix was able

to handle the delayed redirect in Angular and Backbone but not in Ember, which could be

due to the more complex timeout functionality of Ember’s run-loops. Google Cloud Security

Scanner was unable to handle delay in Angular but it was able to handle it in Backbone and

92

5.5. EVALUATION

Ember.

Required/non-empty text field: Navigating from the Search page to the Add Search

Tags page saw mixed results. The only stipulation is for text to be entered in the search

query field, yet this proved to be more of a hindrance than expected. Crawljax only suc-

ceeded with Backbone while Acunetix was only successful with Angular. When the event

binding was changed to an href, Acunetix was then successful with Ember as well, although

still not with Backbone. Google Cloud Security Scanner was able to create notes by filling

out the mandatory fields in Angular, Backbone, and Ember.

Checkbox: Although the only requirement to transition from the Add Search Tags page

to the Search Results page is having the checkbox marked, neither Acunetix nor Crawljax

was able to do this in any scenario. This is surprising due to the fact that many web appli-

cations include more complex controls. Google Cloud Security Scanner was unable to pass

the checkbox test in the Angular implementation but it did succeed in the Backbone and

Ember implementations.

Dealing with side-effects: An additional difficulty for crawling modules that presented

itself is the consequence of actions. The test application provides a deletion button, if a data

was entered or the application was seeded with data, but the tool invoked this button before

crawling, it would never reach pages related to viewing or editing that data. This occurred

with Crawljax, as it sequentially evaluated the Home page and reached the delete button

before the data display table. This was also the case with Google Cloud Security Scanner,

because it was able to create a new note but it was unable to reach many of the other pages

because it deleted the note before it could proceed any further.

Framework Support: Google Cloud Security Scanner had little success in crawling the app

built using Angular framework. This is surprising, as it did the best in the tests, as it was

able to successfully crawl and reach all pages of the Backbone and Ember applications. It

is noteworthy that Google maintains the Angular framework and yet, their security scanner

93

5.5. EVALUATION

Event
Binding

Data
Binding

Delayed
Redirect

Required
Field Checkbox %

Acunetix
-Angular 3 3 3 3 67%
-Backbone 3 3 33%
-Ember 3 3 3 50%
Crawljax
-Angular 3 3 33%
-Backbone 3 3 3 50%
-Ember 3 3 33%
Google Cloud Security Scanner
-Angular 3 3 50%
-Backbone 3 3 3 3 3 100%
-Ember 3 3 3 3 3 100%

Table 5.3: Crawling challenges successfully completed

was unable to handle this framework. Furthermore, as this is a cloud scanner that will only

scan Google App Engine web applications, it is difficult for us to determine what exactly

about Angular caused Google Cloud Security Scanner trouble.

5.5.4 Measuring and Comparing Capabilities

While Table 5.2 details the pages reached without modification to the test application, it

provides a baseline evaluation of each tool’s abilities, Table 5.3 depicts the crawling challenges

completed with modifications necessary to test individual functionality. Any alterations to

the test application were made only if a tool’s shortcoming in one area prevented testing

another. These modifications included exchanging event binding for hrefs and seeding the

application with existing notes. Whenever this was necessary for testing, I ensured that any

modifications did not compromise the integrity of the specific challenge that required further

individual testing.

As previously stated, 10 of the 13 tools I tested were unable to execute JavaScript in any

capacity. Between the three remaining tools, Google Cloud Security Scanner performed the

best in the unmodified test, reaching 80% (24/30) of the pages followed by Crawljax which

reached 53% (16/30) of the pages across the three frameworks while Acunetix reached 40%

(12/30). In the individual challenges, Google Cloud Security Scanner was successful in 72%

(13/18) across the three frameworks while Acunetix was successful in 50% (9/18) followed

by Crawljax, which completed 39% (7/18). Because Crawljax is solely a crawler, Google

Cloud Security Scanner was the top performing black-box scanner that I tested, yet even it

94

5.5. EVALUATION

reported # detected (# reported - # detected) % redundancy
Angular 32 4 28 87.5%
Backbone 162 10 152 93.82%
Ember 136 10 126 92.64%

Table 5.4: Redundant reports and redundancy rate of Google Cloud Security Scanner

had shortcomings and issues.

5.5.5 Security Effectiveness

The focus of this work is on understand the crawling capabilities of black-box web vulner-

ability scanners, however, because I used a simple XSS vulnerability to measure the crawling

progress of the scanners, I was able to gain some insights into the security functionality of

the tools.

Typically, the effectiveness of vulnerability analysis tools depend on the number of true

positives (reports that are actually vulnerable), false positives (reports that are not actually

vulnerable), and false negatives (vulnerabilities that are not reported). However, in this

study I identified a new type of metric, the redundant reports. This occurs when a scanner

reports the same vulnerability multiple times. This behavior was observed in Google Cloud

Security Scanner. I define the redundancy rate (similar to the false positive calculation) as

vulnerabilities reported−# vulnerabilities detected

vulnerabilities reported

This rate describes what percentage of the vulnerability reports were redundant. The

results for Google Cloud Security Scanner, which was the only scanner to demonstrate this

behavior, are shown in Table 5.4. For the Angular implementation, out of the 10 vulnerable

pages, 4 were detected and each of these were reported 8 times, hence the total number of

vulnerabilities reported was 32. Though all vulnerabilities were detected in Backbone and

Ember, the number of redundant reports was even higher: 162 vulnerabilities were reported

in Backbone with only 10 real vulnerabilities. As for Ember, Google Cloud Security Scanner

reported 136 vulnerabilities from 10 real vulnerabilities. The issue here is that even though

there were 10 pages with the same XSS vulnerability, Google Cloud Security Scanner used

different types of injection vectors for each detected page, and reported each successful re-

95

5.6. DISCUSSION

sult, thus increasing the count of detected vulnerability. Similar to false positives, redundant

reports erode the developer’s confidence in the tool, as the total number of reported vulner-

abilities is larger than the actual number of vulnerabilities, and it is up to the developer to

wade through and understand all the reports. However, redundant reports are distinct from

false positives, as false positives are vulnerability reports that are not vulnerable, while re-

dundant reports are vulnerability reports that are actually vulnerable, but reported multiple

times.

5.5.6 SPARE Results

The goal of rewriting SPAs is to make them more accessible to vulnerability scanners

which otherwise cannot explore them or find vulnerabilities. The SPARE prototype is de-

signed for Angular and I evaluated it on the the test application used for capability evaluation

with Acunetix.

The project was originally measuring how well penetration testing tools can explore SPAs,

rather than find vulnerabilities. Acunetix was previously only able to access 40% of all views

before rewriting 5.2. Views it could not explore include Created, Edit Note, Search, Search

Tags, Search Results, and View Note. After rewriting the application through SPARE, all

view changes and forms are rewritten to provide hrefs and HTML forms. This step allows the

crawling module to bypass tests such as checkboxes and required data input fields, and data

dependencies as requiring prior input. Before identifying vulnerabilities, tools are required

to access the relevant pages. Making these views accessible is a step towards measuring

increased vulnerability finding, and should be analyzed in future work.

5.6 Discussion

This work found that not only is it difficult for existing black-box vulnerability scanners to

explore client-side web applications, but also that the complexity of and incongruity among

various JavaScript frameworks further complicates comprehensive analysis.

Two of the key reasons that traditional crawlers are unsuccessful in this context are

that they fail to fully replicate browser behavior and do not effectively discover application

96

5.6. DISCUSSION

resources [79]. To handle client-side applications, crawlers must have the ability to execute

or analyze JavaScript in a similar manner to a browser’s JavaScript engine, which 10 of the

13 tested did not. They can no longer simply parse HTML for a few keywords; they must

encompass multiple frameworks’ implementations of event binding and navigating pages.

Tools such as SPARE can be used to enhance the state of the art, alternatively scanners

could be enhanced to provide full JavaScript execution.

Client-side frameworks have become popular and pervasive, and thus support for these

technologies must be enhanced. Even among scanners that have been improved there is a

need to consistently adapt to the diversity of emerging frameworks and technologies. For

example, although Google Cloud Security Scanner performed the best of the tested tools, it

faced considerable challenge in the Angular version. Although a tool may be very sophisti-

cated, having a shortcoming in one area can prohibit it from succeeding as a whole.

The main challenge of client-side web applications, from the perspective of a black-box

vulnerability scanner, is understanding how to get input to the application, in order to fuzz

the input and test for vulnerabilities. Each client-side web application has significant freedom

to choose the way that input is sent to the application. Server-side web applications have, for

the most part, standardized on sending input to the application through the query or path

of the URL, and black-box vulnerability scanners take advantage of this standardization

to fuzz accordingly. However, client-side web applications have significantly more freedom,

both in how the input is encoded (name/value pairs separated by the traditional = or any

other delimiter) and the location in the URL of the parameters (in the URL fragment or

elsewhere).

These custom interfaces are a fundamental challenge that is unique to client-side web

applications. For black-box vulnerability analysis tools to be effective at finding vulnerabil-

ities in client-side web application, they must (1) crawl the application, (2) understand the

interface, and (3) use this understanding to properly fuzz the application. The new step

here is understanding the interface of the client-side web application, and this is a research

challenge that must be tackled in order to extend the benefits of black-box vulnerability

scanners to client-side web applications. Tools such as SPARE offer an option to enhance

capabilities of such scanners and should be further explored.

97

5.7. FUTURE WORK

5.7 Future Work

This project benchmarks black-box penetration testing tools and suggests a prototype to

overcome their shortcomings. There are multiple avenues for engineering improvement, such

as performance, flexibility, and adoption for other frameworks.

One area of possible improvement is management of state. The prototype creates a new

DOM object for every request and state is written to, and restored from cookies. The system

could be extended to expose the state in a direct manner, such as generate forms for objects.

Vulnerability testing tools with advanced fuzzing capabilities could directly mutate state

then.

As JSDOM is simulating a browser with limited capabilities, SPARE could be ported

to a real browser, such as headless Chrome. This would close the gap and present the

penetration testing tools with correct rendering of the page. This would require a proxy

system translating pentesting events to actions in the browser. However, this would still

require for the application to be rewritten, as the tools would not be able to interact with

elements, even if they are rendered correctly.

Furthermore, not all events can be shifted from the client to the server. For example

mouseover events cannot be represented as server-side effect due to lack of pointer object.

SPARE allows to access all views immediately, this can lead to states not intended by

the original application. For example, a scanner could call Delete before creating elements,

this could otherwise be prevented by program logic.

A solution that would improve penetration testing tools is to make them aware of

JavaScript and use the program code to their benefit. This would make rewriting obsolete.

5.8 Chapter Summary

This chapter evaluates how black-box penetration testing tools interact with SPAs, and

enhances access through a SPA-rewriting prototype, SPARE. The results of the evaluation

clearly demonstrate that the current offerings of black-box vulnerability scanners lack the

capabilities vital to keep up with progressive technologies. The paradigm shift of server-side

98

5.8. CHAPTER SUMMARY

code execution to more code on the client-side has not been followed by these penetration

testing tools. I have identified a number of challenges that scanners need to overcome when

testing modern web applications, and even though some tools have begun undertaking this

task, even these are far from complete.

Additionally, although the primary focus is on client-side frameworks, it is also clear

that support for new client-side web applications must be improved. Both Acunetix and

Crawljax had marginal success with a required text field and no success with a required

checkbox. These are commonplace scenarios and the failure to handle them is a significant

shortcoming.

I found that, although a tool may be sophisticated, a deficiency in one area can lead to

failure as a whole. Acunetix was fairly sophisticated, yet its inability to handle Backbone’s

event binding rendered it useless against the unmodified testing application.

As such, these tools must develop the ability to understand the interface of client-side

web applications, in order to fuzz the correct input. Only by doing so will vulnerability

scanners maintain the ability to evaluate security flaws in the ever-evolving world of web

applications.

With the SPARE prototype I pushed client-side code back to the server. With this

approach SPAs can be lead into the traditional request/response paradigm and enhance

access scanners have to applications.

99

Chapter 6

Papers

This chapter gives an overview of publications this thesis is built upon, and publications

that are not part of it. The former are mentioned briefly as they are discussed throughout

the thesis, while the latter are discussed in more detail.

6.1 Thesis Publications

Parts of this thesis are based on the following papers. Two are peer-reviewed and pub-

lished [106, 107], the third one is in preparation for submission.

M. Weissbacher, T. Lauinger, and W. Robertson. Why is CSP Failing? Trends and

Challenges in CSP Adoption. In Proceedings of the International Symposium on Research in

Attacks, Intrusions, and Defenses (RAID), 2014.

M.Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. Robertson, and E. Kirda.

Ex-ray: Detection of history-leaking browser extensions. In Annual Computer Security Ap-

plications Conference (ACSAC), 2017.

The material Chapter 5 is based off is not yet published or submitted for publication.

100

6.2. OTHER WORK

6.2 Other Work

This section summarizes my work outside of the scope of the main thesis. All listed

projects are completed and published.

ZigZag: Automatically Hardening Web Applications Against Client-

side Validation Vulnerabilities [108]

Client-side Validation (CSV) Vulnerabilities can occur when JavaScript-based Web ap-

plications use modern client-side messaging primitives. ZigZag is a system for hardening

JavaScript-based Web applications against such CSV attacks. The system transparently in-

struments client-side code to perform dynamic invariant detection on security-sensitive code,

generating models that describe how – and with whom – client-side components interact.

Learned invariants are then enforced through a subsequent instrumentation step. ZigZag

is capable of automatically hardening client-side code against both known and previously-

unknown vulnerabilities. I used static analysis to target important functions when recompil-

ing, and dynamic analysis to prevent attacks.

To make dynamic JavaScript analysis more accessible to other researchers, I published a

patch for Google Closure Compiler that enables program instrumentation via templates. It

was accepted into the mainline branch in September 2015.

Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning

Systems with Human Assistance [81]

Software permeates every aspect of our world, from our homes to the infrastructure that

provides mission-critical services.

As the size and complexity of software systems increase, the number and sophistication

of software security flaws increase as well. The analysis of these flaws began as a manual

approach, but it soon became apparent that a manual approach alone cannot scale, and that

tools were necessary to assist human experts in this task, resulting in a number of techniques

and approaches that automated certain aspects of the vulnerability analysis process.

101

6.2. OTHER WORK

Recently, DARPA carried out the Cyber Grand Challenge, a competition among au-

tonomous vulnerability analysis systems designed to push the tool-assisted human-centered

paradigm into the territory of complete automation, with the hope that, by removing the

human factor, the analysis would be able to scale to new heights. However, when the au-

tonomous systems were pitted against human experts it became clear that certain tasks,

albeit simple, could not be carried out by an autonomous system, as they require an under-

standing of the logic of the application under analysis.

Based on this observation, I propose a shift in the vulnerability analysis paradigm, from

tool-assisted human-centered to human-assisted tool-centered. In this paradigm, the au-

tomated system orchestrates the vulnerability analysis process, and leverages humans to

perform well-defined sub-tasks, whose results are integrated in the analysis. As a result,

it is possible to scale the analysis to a larger number of programs, and, at the same time,

optimize the use of expensive human resources.

This paper covers the design for a human-assisted automated vulnerability analysis sys-

tem, describes its implementation atop an open-sourced autonomous vulnerability analysis

system that participated in the Cyber Grand Challenge, and evaluates and discuss the sig-

nificant improvements that non-expert human assistance can offer to automated analysis

approaches.

BabelCrypt: The Universal Encryption Layer for Mobile Messaging

Applications [70]

Internet-based mobile messaging applications have become a ubiquitous means of com-

munication, and have quickly gained popularity over cellular short messages (SMS). Unfortu-

nately, from a security point of view, free messaging services do not guarantee the privacy of

users. For example, free messaging providers can record and store exchanged messages indef-

initely to collect information about specific users. Moreover, these messages can be accessed

by criminals who gain access to social media accounts. In this paper, I introduce Babel-

Crypt, a system that addresses the problem of automatically retrofitting arbitrary mobile

chat applications with end-to-end encryption. My system works by transparently interfacing

102

6.2. OTHER WORK

with the original client applications supplied by the respective service providers. It does not

require any modification to the individual applications, nor does it require any knowledge or

customization for specific chat applications. Babelcrypt is able to automatically inject con-

trol messages in-band, using the underlying application’s message exchange mechanism, and

thus supports running arbitrarily complex encryption protocols such as OTR. I successfully

used BabelCrypt with a number of popular messaging applications including Facebook Mes-

senger, WhatsApp, and Skype. The evaluation shows that BabelCrypt provides end-to-end

security for arbitrary messaging applications while satisfactorily preserving the original user

experience of the messaging application.

103

Chapter 7

Conclusion

The increased use of the Web platform, combined with the shift of Web program com-

plexity from the server to the client, presents new challenges which this thesis is addressing.

The growth in complexity of client-side Web software opens new attack vectors where vul-

nerabilities can be exploited and hidden functionality can act against assumed privacy.

In particular, the thesis statement:

Exploitable software vulnerabilities and hidden functionality permeate software. Analysis

of client-side software in search of vulnerabilities and unintended behavior becomes increas-

ingly important as the Web program logic shifts from the server to the client. In this thesis

I develop novel methods and automated mechanisms to reduce the impact of client-side vul-

nerabilities and hidden privacy invasions. I show that such an approach is both feasible and

effective. I investigate shortcomings and possible avenues for enhancement of CSP, Web

vulnerability scanners, and privacy of browser extensions.

I back this claim as follows:

• The need for such systems has been demonstrated by identifying shortcomings, mea-

suring and evaluating them in the three areas. I show that CSP is underutilized,

too complex, and often misconfigured. Browser extensions often leak private brows-

104

CHAPTER 7. CONCLUSION

ing data, and black-box Web vulnerability scanners underperform in exploring SPAs

leaving vulnerabilities to be exploited in production.

• The resulting systems reduce the impact on client-side security in the three areas

as follows: Automatically generating CSP rules enables website owners to employ

CSP, reducing exposure to content injection. Detection systems for history leaks in

browser extensions can expose hidden functionality, reducing the impact on users. In

fact, during the course of this thesis extensions were removed from an extension store,

effectively reducing the privacy impact on 8 million users. For black-box vulnerability

tools, I highlighted shortcomings that can be used to extend these systems. However,

I also wrote a prototype that exposes potentially unexplored pages to vulnerability

scanners, making them more accessible to vulnerability search.

Given the above hypothesis, this thesis presents novel methods and automated mech-

anisms to reduce the impact of client-side vulnerabilities and hidden privacy invasions. I

show that such an approach is both feasible and effective, by investigating shortcomings

and possible avenues for enhancement of CSP, Web vulnerability scanners, and privacy of

browser extensions. In more detail:

Content Security Policy. I present a long-term study on CSP as it is deployed on

the Web. I have found that CSP adoption significantly lags other Web security mechanisms,

and that even when it has been adopted by a site, it is often deployed in a way that negates

its theoretical benefits for preventing content injection and data exfiltration attacks.

In addition, by enabling CSP at four sites, I observed that it is difficult for third parties

to deploy CSP, either through incremental deployment using report-only mode or through

Web application crawling to semi-automatically generate policies.

CSP clearly holds great promise as a Web security standard, but I can only conclude

that it is difficult for most sites to deploy it to its full potential in its current form. It is my

hope that the improvements I suggest here, as well as upcoming features of the 1.1 draft,

will allow site operators and developers to make effective use of content security policies and

result in a safer Web ecosystem.

History Leaking Browser Extensions. I show that history leaks in browser exten-

105

7.1. FUTURE WORK

sions are a prevalent problem, and I introduce new methods of detecting privacy-violating

browser extensions independently of their protocol. I use a combination of supervised and

unsupervised methods to find features characteristic to tracking in extensions. I introduce

Ex-Ray, a prototype implementation of my approach for the Chrome browser, and find two

extensions in the official Chrome Web Store which leak private information in previously

undetectable ways.

SPA Rewriting to Enhance Vulnerability Discovery. I demonstrate that the cur-

rent offerings of black-box vulnerability scanners lack the capabilities vital to keep up with

progressive technologies. I have identified a number of challenges that scanners need to

overcome when testing modern Web applications, and even though some tools have begun

undertaking this task, even these are far from complete. As such, these tools must develop

the ability to understand the interface of client-side web applications, in order to fuzz the

correct input. Only by doing so will vulnerability scanners maintain the ability to evaluate

security flaws in the ever-evolving world of web applications. With the SPARE prototype I

pushed client-side code back to the server. With this approach SPAs can be lead into the

traditional request/response paradigm and enhance access scanners have to applications.

To conclude, I presented systems developed for measurement and detection of security

properties of client-side Web applications. I demonstrate both the importance of measure-

ment of such properties, as well as the effectiveness and feasibility of systems used to detect

such shortcomings and find hidden privacy invasions.

7.1 Future Work

There are several open questions as results of the presented work. For CSP and Web

vulnerabilities in general the ideal solution would be to allow Web applications to be de-

veloped securely out of the box, free of vulnerabilities. This would make both CSP and

black-box Web vulnerability testing tools obsolete. However, as such a goal seems elusive,

more tangible work directions include development of Web frameworks that automatically

generate CSP directives, and development of applications scanners that are able to interact

106

7.1. FUTURE WORK

with JavaScript directly.

While I demonstrated technological measures for detection of hidden privacy leaks, tech-

nology is lacking understanding of program intent. Extensions may be purposefully leaking

data as part of their functionality and the user is well aware of it. A promising research direc-

tion could be exploring options of merging measurement of program behavior with perceived

intent. Furthermore, exploring paths of discouraging extension developers from packaging

such illicit functionality could be fruitful.

107

Bibliography

[1] DNS Prefetching - The Chromium Projects.

[2] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, 2002.

[3] IE8 Security Part IV: The XSS Filter, 2008.

[4] IE8 Security Part V: Comprehensive Protection, 2008.

[5] RFC 6797 - HTTP Strict Transport Security (HSTS), 2012.

[6] Closure Compiler, 2013.

[7] Content Security Policy 1.1, 2013.

[8] Cross-Origin Resource Sharing, W3C Candidate Recommendation 29 January 2013,

2013.

[9] Postcards from the post-XSS world, 2013.

[10] RFC 7034 - HTTP Header Field X-Frame-Options, 2013.

[11] Acunetix. Acunetix Web Vulnerability Scanner. http://www.acunetix.com/.

[12] Acunetix. Cross-site scripting (xss) attack. http://www.acunetix.com/websitesecurity

/cross-site-scripting.

[13] Acunetix. The role and function of black box scanners. http://www.acunetix.com/web

sitesecurity/blackbox-scanners.

108

http://www.acunetix.com/
http://www.acunetix.com/websitesecurity/cross-site-scripting
http://www.acunetix.com/websitesecurity/cross-site-scripting
http://www.acunetix.com/websitesecurity/blackbox-scanners
http://www.acunetix.com/websitesecurity/blackbox-scanners

BIBLIOGRAPHY

[14] A. Aggarwal, B. Viswanath, L. Zhang, S. Kumar, A. Shah, and P. Kumaraguru. I spy

with my little eye: Analysis and detection of spying browser extensions. arXiv preprint

arXiv:1612.00766, 2016.

[15] AnantaSec. Web Vulnerability Scanners Evaluation. http://anantasec.blogspot.-

com/2009/01/web-vulnerability-scanners-comparison.html, 2009.

[16] AngularJS. Angularjs. https://angularjs.org.

[17] AngularJS. What is angular? https://docs.angularjs.org/guide/introduction.

[18] S. Arshad, A. Kharraz, and W. Robertson. Identifying extension-based ad injection

via fine-grained web content provenance. In Proceedings of the 19th International

Symposium on Research in Attacks, Intrusions and Defenses (RAID), Paris, FR, 2016.

[19] Backbone.js. Backbone.js. http://backbonejs.org.

[20] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from extension

vulnerabilities. 2010.

[21] A. Barth, C. Jackson, and J. C. Mitchell. Securing Frame Communication in Browsers.

Communications of the ACM, 2009.

[22] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the Art: Automated Black-

Box Web Application Vulnerability Testing. In IEEE Symposium on Security and

Privacy (Oakland), 2010.

[23] S. Calzavara, A. Rabitti, and M. Bugliesi. Content security problems?: Evaluating the

effectiveness of content security policy in the wild. In ACM Conference on Computer

and Communications Security (CCS), 2016.

[24] S. Chen. The prices vs. features of web application vulnerability scan-

ners. http://sectoolmarket.com/price-and-feature-comparison-of-web-applicatio

n-scanners-unified-list.html, 2015.

109

https://angularjs.org
https://docs.angularjs.org/guide/introduction
http://backbonejs.org
http://sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html
http://sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-unified-list.html

BIBLIOGRAPHY

[25] L. F. Cranor, J. Reagle, and M. S. Ackerman. Beyond concern: Understanding net

users’ attitudes about online privacy. The Internet upheaval: raising questions, seeking

answers in communications policy, pages 47–70, 2000.

[26] Crawljax. Crawljax: Crawling ajax-based web applications. http://crawljax.com.

[27] M. Curphey and R. Araujo. Web Application Security Assessment Tools. IEEE Secu-

rity and Privacy, 4(4), 2006.

[28] detectify labs. Chrome extensions - aka total absence of privacy. https://labs.detec

tify.com/2015/11/19/chrome-extensions-aka-total-absence-of-privacy/, 2015.

[29] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,

and R. Whelan. Lava: Large-scale automated vulnerability addition. In Security and

Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016.

[30] E. Dorn and H. Howard. Ember.js and angularjs: Two architectures compared. http:

//www.slideshare.net/lrdesign/architecture-emberjs-and-angularjs, 2012.

[31] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An Analysis of

Black-box Web Vulnerability Scanners. In Proceedings of the Conference on Detection

of Intrusions and Malware and Vulnerability Assessment (DIMVA), Bonn, Germany,

2010.

[32] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna. deDa-

cota: Toward Preventing Server-Side XSS via Automatic Code and Data Separation.

In ACM Conference on Computer and Communications Security (CCS), 2013.

[33] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy Leaks in iOS

Applications. In Network and Distributed System Security Symposium (NDSS), San

Diego, CA, 2011.

[34] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. X. Song. Dynamic spyware analysis.

In USENIX annual technical conference (ATC), 2007.

110

http://crawljax.com
https://labs.detectify.com/2015/11/19/chrome-extensions-aka-total-absence-of-privacy/
https://labs.detectify.com/2015/11/19/chrome-extensions-aka-total-absence-of-privacy/
http://www.slideshare.net/lrdesign/architecture-emberjs-and-angularjs
http://www.slideshare.net/lrdesign/architecture-emberjs-and-angularjs

BIBLIOGRAPHY

[35] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds

of classifiers to solve real world classification problems? The Journal of Machine

Learning Research (JMLR), 15(1):3133–3181, Jan. 2014.

[36] FusionBrew. Angularjs vs backbone.js vs ember.js - choosing a javascript framework. ht

tp://blog.fusioncharts.com/2014/08/angularjs-vs-backbone-js-vs-ember-js, 2014.

[37] R. Gaucher. Grabber. http://rgaucher.info/beta/grabber.

[38] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: automatically detect-

ing potential privacy leaks in android applications on a large scale. In International

Conference on Trust and Trustworthy Computing (TRUST). Springer, 2012.

[39] Google. Skipfish. https://code.google.com/p/skipfish.

[40] Google. Google cloud security scanner. https://cloud.google.com/tools/security-

scanner/, 2015.

[41] D. Gruber. The top 10 javascript frameworks, and the communities behind them.

Technical report, Black Duck, 2014.

[42] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security for browser

extensions. In IEEE Symposium on Security and Privacy (Oakland), 2011.

[43] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May i?-content security policy en-

dorsement for browser extensions. In International Conference on Detection of Intru-

sions and Malware, and Vulnerability Assessment (DIMVA), 2015.

[44] S. Heule, D. Rifkin, A. Russo, and D. Stefan. The most dangerous code in the browser.

In USENIX Hot Topics in Operating Systems (HotOS), Kartause Ittingen, Switzerland,

2015.

[45] Hewlett-Packard. Webinspect. http://www8.hp.com/us/en/software-solutions/webins

pect-dynamic-analysis-dast.

[46] J. Howell, C. Jackson, H. J. Wang, and X. Fan. Mashupos: Operating system abstrac-

tions for client mashups. In HotOS, 2007.

111

http://blog.fusioncharts.com/2014/08/angularjs-vs-backbone-js-vs-ember-js
http://blog.fusioncharts.com/2014/08/angularjs-vs-backbone-js-vs-ember-js
http://rgaucher.info/beta/grabber
https://code.google.com/p/skipfish
https://cloud.google.com/tools/security-scanner/
https://cloud.google.com/tools/security-scanner/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast

BIBLIOGRAPHY

[47] IBM. Ibm security appscan. http://www-03.ibm.com/software/products/en/appscan-

standard.

[48] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injection Attacks with Browser-

Enforced Embedded Policies. In International Conference on World Wide Web

(WWW), 2007.

[49] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A Web Vulnerability

Scanner. In Proceedings of the International World Wide Web Conference, 2006.

[50] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk:

Eliciting malicious behavior in browser extensions. In USENIX Security Symposium,

San Diego, CA, 2014.

[51] S. Lekies, K. Kotowicz, S. Groß, E. A. V. Nava, and M. Johns. Code-reuse aacks for the

web: Breaking cross-site scripting mitigations via script gadgets. In ACM Conference

on Computer and Communications Security (CCS), 2017.

[52] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the raiders

of the lost trackers: An archaeological study of web tracking from 1996 to 2016. In

USENIX Security Symposium, Austin, TX, 2016.

[53] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis. A Lustrum of

Malware Network Communication: Evolution and Insights. In Proceedings of the 38th

IEEE Symposium on Security and Privacy, San Jose, CA, USA, May 2017.

[54] D. Lewis. Counterfactuals and comparative possibility. Journal of Philosophical Logic,

2:2161–2173, 1973.

[55] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti. Detecting Environment-Sensitive

Malware. In Recent Advances in Intrusion Detection (RAID), 2011.

[56] N. K. Malhotra, S. S. Kim, and J. Agarwal. Internet users’ information privacy con-

cerns (iuipc): The construct, the scale, and a causal model. Information systems

research, 15(4):336–355, 2004.

112

http://www-03.ibm.com/software/products/en/appscan-standard
http://www-03.ibm.com/software/products/en/appscan-standard

BIBLIOGRAPHY

[57] R. Mann. Using google cloud platform for security scanning. http://googlecloudpla

tform.blogspot.com/2015/02/using-google-cloud-platform-for.html, 2015.

[58] E. Mariconti, J. Onaolapo, G. Ross, and G. Stringhini. The cause of all evils: Assessing

causality between user actions and malware activity. In USENIX Workshop on Cyber

Security Experimentation and Test (CSET), 2017.

[59] A. Matthews. Flame on! a beginner’s guide to ember.js. http://www.adobe.com/devne

t/archive/html5/articles/flame-on-a-beginners-guide-to-emberjs.html, 2012.

[60] J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology. In

IEEE Symposium on Security and Privacy (Oakland), 2012.

[61] S. McConnel. Code complete, 1993.

[62] L. A. Meyerovich and B. Livshits. ConScript: Specifying and enforcing fine-grained

security policies for Javascript in the browser. In IEEE Symposium on Security and

Privacy (Oakland), 2010.

[63] MileScan. Parospro. http://www.milescan.com.

[64] N-Stalker. N-stalker: The web security specialists. http://www.nstalker.com.

[65] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel,

F. Piessens, and G. Vigna. You Are What You Include: Large-scale Evaluation of

Remote JavaScript Inclusions. In ACM Conference on Computer and Communications

Security (CCS), 2012.

[66] T. Oda and A. Somayaji. Enhancing Web Page Security with Security Style Sheets.

Carleton University, 2011.

[67] T. Oda, G. Wurster, P. C. van Oorschot, and A. Somayaji. SOMA: Mutual Approval

for Included Content in Web Pages. In ACM Conference on Computer and Communi-

cations Security (CCS), 2008.

[68] L. Olejnik, M.-D. Tran, and C. Castelluccia. Selling Off Privacy at Auction. In ISOC

Network and Distributed System Security Symposium (NDSS), 2014.

113

http://googlecloudplatform.blogspot.com/2015/02/using-google-cloud-platform-for.html
http://googlecloudplatform.blogspot.com/2015/02/using-google-cloud-platform-for.html
http://www.adobe.com/devnet/archive/html5/articles/flame-on-a-beginners-guide-to-emberjs.html
http://www.adobe.com/devnet/archive/html5/articles/flame-on-a-beginners-guide-to-emberjs.html
http://www.milescan.com
http://www.nstalker.com

BIBLIOGRAPHY

[69] OWASP. Owasp zed attack proxy project. https://www.owasp.org/index.php/OWASP_Z

ed_Attack_Proxy_Project.

[70] A. T. Ozcan, C. Gemicioglu, K. Onarlioglu, M. Weissbacher, C. Mulliner, W. Robert-

son, and E. Kirda. BabelCrypt: The Universal Encryption Layer for Mobile Messaging

Applications. In Financial Cryptography and Data Security (FC), 2015.

[71] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. Cspautogen: Black-box

enforcement of content security policy upon real-world websites. In ACM Conference

on Computer and Communications Security (CCS), 2016.

[72] H. Peine. Security test tools for web applications. Technical Report 048.06, Fraunhofer

IESE, 2006.

[73] T. Reenskaug. Models - views - controllers. Technical report, Xerox Parc, 1979.

[74] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. In Encyclopedia of database

systems, pages 532–538. Springer, 2009.

[75] F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-

party tracking on the web. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), San Jose, CA, 2012.

[76] M. Rouse. Fuzz testing (fuzzing). http://searchsecurity.techtarget.com/definitio

n/fuzz-testing, 2010.

[77] M. Samuel, P. Saxena, and D. Song. Context-Sensitive Auto-Sanitization in Web

Templating Languages Using Type Qualifiers. In ACM Conference on Computer and

Communications Security (CCS), 2011.

[78] G. A. Seber and A. J. Lee. Linear regression analysis. John Wiley & Sons, 2012.

[79] S. Shah. Hacking web 2.0 applications with firefox. Technical report, Symantec, 2010.

[80] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code

churn, and developer activity metrics as indicators of software vulnerabilities. IEEE

Transactions on Software Engineering, 2011.

114

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://searchsecurity.techtarget.com/definition/fuzz-testing
http://searchsecurity.techtarget.com/definition/fuzz-testing

BIBLIOGRAPHY

[81] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang, C. Kruegel, and G. Vi-

gna. Rise of the hacrs: Augmenting autonomous cyber reasoning systems with human

assistance. In Proceedings of the ACM Conference on Computer and Communications

Security (CCS). ACM, 2017.

[82] A. J. Smola and B. Sch�lkopf. A tutorial on support vector regression. Statistics and

computing, 14(3), 2004.

[83] P. Snyder, L. Ansari, C. Taylor, and C. Kanich. Browser feature usage on the modern

web. In Proceedings of the 2016 Internet Measurement Conference, 2016.

[84] P. Snyder, C. Taylor, and C. Kanich. Most websites don’t need to vibrate: A cost-

benefit approach to improving browser security. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, pages 179–194. ACM,

2017.

[85] S. Son and V. Shmatikov. The Postman Always Rings Twice: Attacking and Defending

postMessage in HTML5 Websites. In ISOC Network and Distributed System Security

Symposium (NDSS), 2013.

[86] S. Sousa, F. G. Martin, M. C. M. Alvim-Ferraz, and M. C. Pereira. Multiple linear

regression and artificial neural networks based on principal components to predict

ozone concentrations. Environmental Modelling & Software, 22(1):97–103, 2007.

[87] S. Stamm, B. Sterne, and G. Markham. Reining in the Web with Content Security

Policy. In International Conference on World Wide Web (WWW), 2010.

[88] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the privacy diffu-

sion enabled by browser extensions. In Proceedings of the 26th International Conference

on World Wide Web, 2017.

[89] B. Stock, M. Johns, M. Steffens, and M. Backes. How the web tangled itself: Uncov-

ering the history of client-side web (in)security. In Proceedings of the 26th USENIX

Security Symposium (USENIX Security ’17), Vancouver, BC, 2017. USENIX Associa-

tion.

115

BIBLIOGRAPHY

[90] Subgraph. Vega. https://subgraph.com/vega.

[91] N. Surribas. Wapiti. http://wapiti.sourceforge.net.

[92] L. Suto. Analyzing the Effectiveness and Coverage of Web Application Security Scan-

ners. Case Study, 2007.

[93] L. Suto. Analyzing the Accuracy and Time Costs of Web Application Security Scanners,

2010.

[94] K. M. Tan and R. A. Maxion. ” why 6?” defining the operational limits of stide, an

anomaly-based intrusion detector. In Security and Privacy, 2002. Proceedings. 2002

IEEE Symposium on, pages 188–201. IEEE, 2002.

[95] M. Ter Louw and V. Venkatakrishnan. BLUEPRINT: Robust Prevention of Cross-site

Scripting Attacks for Existing Browsers. In IEEE Symposium on Security and Privacy

(Oakland), 2009.

[96] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy,

A. Nappa, V. Paxson, P. Pearce, N. Provos, and M. A. Rajab. Ad injection at scale:

Assessing deceptive advertisement modifications. In IEEE Symposium on Security and

Privacy (Oakland), 2015.

[97] Tinfoil. Tinfoil security. https://www.tinfoilsecurity.com/.

[98] S. Van Acker, D. Hausknecht, and A. Sabelfeld. Data exfiltration in the face of csp. In

Proceedings of the 11th ACM on Asia Conference on Computer and Communications

Security. ACM, 2016.

[99] M. Vieira, N. Antunes, and H. Madeira. Using Web Security Scanners to Detect Vul-

nerabilities in Web Services. In Proceedings of the Conference on Dependable Systems

and Networks, 2009.

[100] L. von Ahn, M. Blum, and J. Langford. Telling humans and computers apart auto-

matically. In Communications of the ACM, volume 47, 2004.

116

https://subgraph.com/vega
http://wapiti.sourceforge.net
https://www.tinfoilsecurity.com/

BIBLIOGRAPHY

[101] Web Application Attack and Audit Framework. http://w3af.sourceforge.net/.

[102] W3Schools. Xml dom introduction. http://www.w3schools.com/dom/dom_intro.asp.

[103] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. Csp is dead, long live csp!

on the insecurity of whitelists and the future of content security policy. In ACM

Conference on Computer and Communications Security (CCS), 2016.

[104] J. Weinberger, A. Barth, and D. Song. Towards Client-side HTML Security Policies.

In Workshop on Hot Topics on Security (HotSec), 2011.

[105] M. Weissbacher. These chrome extensions spy on 8 million users. http://mweissbach

er.com/blog/2016/03/31/these-chrome-extensions-spy-on-8-million-users/, 2016.

[106] M. Weissbacher, T. Lauinger, and W. Robertson. Why is CSP Failing? Trends and

Challenges in CSP Adoption. In Proceedings of the International Symposium on Re-

search in Attacks, Intrusions, and Defenses (RAID), 2014.

[107] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. Robertson, and

E. Kirda. Ex-ray: Detection of history-leaking browser extensions. In Annual Computer

Security Applications Conference (ACSAC), 2017.

[108] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna. ZigZag: Auto-

matically Hardening Web Applications Against Client-side Validation Vulnerabilities.

In USENIX Security Symposium, 2015.

[109] A. Wiegenstein, F. Weidemann, M. Schumacher, and S. Schinzel. Web Application

Vulnerability Scanners—a Benchmark. Technical report, Virtual Forge GmbH, 2006.

[110] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on n-grams in

intrusion detection: anomaly detection vs. classification. In Proceedings of the 2013

ACM workshop on Artificial intelligence and security, pages 67–76. ACM, 2013.

[111] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and W. Lee. Un-

derstanding malvertising through ad-injecting browser extensions. In International

Conference on World Wide Web (WWW). ACM, 2015.

117

http://w3af.sourceforge.net/
http://www.w3schools.com/dom/dom_intro.asp
http://mweissbacher.com/blog/2016/03/31/these-chrome-extensions-spy-on-8-million-users/
http://mweissbacher.com/blog/2016/03/31/these-chrome-extensions-spy-on-8-million-users/

	Cover
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract of the Thesis
	1 Introduction
	1.1 Structure of the Thesis

	2 Background
	2.1 HTTP Security Headers
	2.1.1 Overview of Security Headers
	2.1.2 Browser policy frameworks
	2.1.3 Content Security Policy
	2.1.4 Evasion and Attacks Against CSP
	2.1.5 Beyond Level 1 of CSP

	2.2 Browser Extensions
	2.2.1 Extension Security Aspects for Browsers
	2.2.2 Privacy leaks in Extensions
	2.2.3 Privacy leaks in Other Platforms
	2.2.4 Extension Ad Injection
	2.2.5 Extension Analysis Systems
	2.2.6 Tracking: Extensions and the Web

	2.3 Vulnerabilities in Web Applications
	2.3.1 Measuring and Reducing Complexity
	2.3.2 Single Page Applications
	2.3.3 Mash-ups or Widgets
	2.3.4 Client-side communication
	2.3.5 Popular JavaScript Frameworks
	2.3.6 Server-Side Pre-Rendering
	2.3.7 Vulnerability Scanners
	2.3.8 Analysis of Web Vulnerability Scanners

	3 Investigating Content Security Policy
	3.1 Introduction
	3.2 Content Security Policy
	3.2.1 Usage of HTTP Security Headers

	3.3 CSP Violation Reports
	3.3.1 Background
	3.3.2 Methodology
	3.3.3 Results
	3.3.4 Conclusions

	3.4 Semi-Automated Policy Generation
	3.4.1 Methodology
	3.4.2 Evaluation
	3.4.3 Conclusions

	3.5 Discussion
	3.5.1 Discussions with Security Engineers
	3.5.2 Suggested Improvements

	3.6 Chapter Summary
	3.7 Future Work

	4 Identifying History Leaking Browser Extensions
	4.1 Introduction
	4.2 Motivation
	4.2.1 HTTP URL Honeypot
	4.2.2 Types of Trackers
	4.2.3 Threat Model

	4.3 Case study of a large history data collector
	4.3.1 Origins of Data
	4.3.2 SimilarWeb Chrome Extension
	4.3.3 Finding More Extensions
	4.3.4 Network Information
	4.3.5 Reported Extensions

	4.4 Information Leaks in High-Profile Extensions
	4.4.1 WOT: Web of Trust, Website Reputation Ratings
	4.4.2 CouponMate: Coupon Codes & Deals

	4.5 Detection Approach
	4.5.1 Overview
	4.5.2 Network Counterfactual Analysis
	4.5.3 Extension Triage
	4.5.4 History Leakage Detection

	4.6 Ex-Ray Implementation
	4.6.1 Extension Containers
	4.6.2 Browser Instrumentation

	4.7 Evaluation
	4.7.1 Experimental Setting
	4.7.2 Ex-Ray Results

	4.8 Discussion
	4.8.1 Browser-enabled Tracking
	4.8.2 Foundations Towards Solutions
	4.8.3 Evasion

	4.9 Future Work
	4.10 Chapter Summary

	5 SPA Rewriting to Enhance Vulnerability Discovery
	5.1 Introduction
	5.2 Motivation
	5.2.1 Threat Model

	5.3 System Overview
	5.3.1 JavaScript Instrumentation
	5.3.2 Vulnerability Scanner Capability Test and Log Analysis

	5.4 SPARE–SPA Rewriting for Exploitability
	5.4.1 State Management and Manipulation
	5.4.2 Accessibility of views

	5.5 Evaluation
	5.5.1 Setup
	5.5.2 Evaluation of Existing Black-box Systems
	5.5.3 Crawling Results
	5.5.4 Measuring and Comparing Capabilities
	5.5.5 Security Effectiveness
	5.5.6 SPARE Results

	5.6 Discussion
	5.7 Future Work
	5.8 Chapter Summary

	6 Papers
	6.1 Thesis Publications
	6.2 Other Work

	7 Conclusion
	7.1 Future Work

	Bibliography

